Background: Myogenic progenitor cells (activated satellite cells) are able to express both HGF and its receptor cMet. After muscle injury, HGF-Met stimulation promotes activation and primary division of satellite cells. MAGIC-F1 (Met-Activating Genetically Improved Chimeric Factor-1) is an engineered protein that contains two human Met-binding domains that promotes muscle hypertrophy. MAGIC-F1 protects myogenic precursors against apoptosis and increases their fusion ability enhancing muscle differentiation. Hemizygous and homozygous Magic-F1 transgenic mice displayed constitutive muscle hypertrophy.
Methods: Here we describe microarray analysis on Magic-F1 myogenic progenitor cells showing an altered gene signatures on muscular hypertrophy and angiogenesis compared to wild-type cells. In addition, we performed a functional analysis on Magic-F1+/+ transgenic mice versus controls using treadmill test.
Results: We demonstrated that Magic-F1+/+ mice display an increase in muscle mass and cross-sectional area leading to an improvement in running performance. Moreover, the presence of MAGIC-F1 affected positively the vascular network, increasing the vessel number in fast twitch fibers. Finally, the gene expression profile analysis of Magic-F1+/+ satellite cells evidenced transcriptomic changes in genes involved in the control of muscle growth, development and vascularisation.
Conclusion: We showed that MAGIC-F1-induced muscle hypertrophy affects positively vascular network, increasing vessel number in fast twitch fibers. This was due to unique features of mammalian skeletal muscle and its remarkable ability to adapt promptly to different physiological demands by modulating the gene expression profile in myogenic progenitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389201018666170201124602 | DOI Listing |
Arq Bras Cir Dig
January 2025
Mongi Slim Hospital, Department of Pathology - Marsa, Tuni, Tunísia.
Background: Hepatocellular carcinoma (HCC) encompasses rare variants like chromophobe hepatocellular carcinoma (CHCC) characterized by distinct histological features and molecular profiles.
Case Report: A 56-year-old male with chronic hepatitis C, presenting pain in the right hypochondrium. Imaging revealed a solitary liver lesion, subsequently resected and histologically diagnosed as HCC.
Food Sci Anim Resour
January 2025
Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
This study was conducted to investigate the recent research trends of alternative protein foods being developed to replace traditional livestock foods and thus determine the current state of the technology and the potential for industrialization. The results of this study showed that the technology related to cultured meat has not yet reached industrialization. However, serum-free media development, technologies to improve culture efficiency, and technologies to improve taste and flavor are being researched.
View Article and Find Full Text PDFJ Pediatr Ophthalmol Strabismus
January 2025
Purpose: To investigate the effects of recession or re-section surgery on PAX 7 positive satellite cells of the extraocular muscle (EOM) in rabbits.
Methods: A total of 20 rabbits (40 eyes) were included in this study. The superior rectus muscle of the right eye was either recessed or resected.
Front Cell Dev Biol
January 2025
Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, Netherlands.
Muscle repair and regeneration are complex processes. In Duchenne muscular dystrophy (DMD), these processes are disrupted by the loss of functional dystrophin, a key part of the transmembrane dystrophin-associated glycoprotein complex that stabilizes myofibers, indirectly leading to progressive muscle wasting, subsequent loss of ambulation, respiratory and cardiac insufficiency, and premature death. As part of the DMD pathology, histone deacetylase (HDAC) activity is constitutively increased, leading to epigenetic changes and inhibition of muscle regeneration factors, chronic inflammation, fibrosis, and adipogenesis.
View Article and Find Full Text PDFACS Nano
January 2025
Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
Pancreatic cancer therapies such as chemotherapy and immunotherapy are hindered by the dense extracellular matrix known as physical barriers, leading to heterogeneity impeding the effective penetration of chemotherapeutic agents and activation of antitumor immune responses. To address this challenge, we developed a hybrid nanoassembly with a distinct core-satellite-like heterostructure, PLAF@P/T-PD, which is responsive to both internal pH/redox and external ultrasound stimulations. This heterostructural nanoassembly features a polymersome core encapsulating an ultrasound contrast agent perfluoropentane and a chemotherapeutic agent Taxol (PLAF@P/T) electrostatically coated with satellite-like polyplexes carrying an immune agonist dsDNA (PD), which brings about synergistic functions inside the pancreatic tumor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!