A new type of physically cross-linked solid polymer electrolyte was demonstrated by using a poly(vinylidene fluoride) (PVDF) homopolymer in a room-temperature ionic liquid. The physical origins of gelation, specific capacitance, ionic conductivity, mechanical property, and capacitive charge modulation in organic thin-film electrochemical transistors were investigated systematically. Gelation occurs through bridging phase-separated homopolymer crystals by polymer chains in the composite electrolyte, thereby forming a rubbery network. The resulting homopolymer ion gels are able to accommodate both outstanding electrical (ionically conductive and capacitive) and mechanical (flexible and free-standing) characteristics of the component ionic liquid and the structuring polymer, respectively. These ion gels were successfully applied to organic thin-film transistors as high-capacitance gate dielectrics. Therefore, these results provide an effective route to generate a highly conductive rubbery polymer electrolyte that can be used in widespread electronic and electrochemical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b12283DOI Listing

Publication Analysis

Top Keywords

ion gels
12
physically cross-linked
8
homopolymer ion
8
polymer electrolyte
8
ionic liquid
8
organic thin-film
8
homopolymer
4
cross-linked homopolymer
4
gels high
4
high performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!