The effect of the extra methylene group on the ligation properties of glutamic (Glu) vs. aspartic (Asp) acid, and glutamine (Gln) vs. asparagine (Asn) amino acids-two pairs of protein building blocks differing by the length of their side chains-has been studied by employing DFT calculations combined with polarizable continuum model (PCM) computations. Complexes of the nominal species with partner ligands of various structures, charge states, and degree of solvent exposure have been examined. The results obtained reveal that the difference in the alkyl chain length of these amino acid residues does not affect the mode of their binding. This, however, influences the thermodynamics of the ligand-ligand and ligand-metal recognition thus bestowing unique ligation characteristics on the competing entities. The calculations reveal that the competition between the longer-chain and shorter-chain analogs is entropy driven and that the differential electronic effects are of minor importance for the process. Thus, the outcome of the rivalry between Asp and Glu, and Asn and Gln is almost unaffected by the nature of the partner ligand, its charge state and, in most cases, the dielectric properties of the binding site. The longer-chain Glu, as opposed to its shorter-chain Asp counterpart, is the preferred partner ligand in various protein binding sites. Contrariwise, the shorter-chain Asn binds more favorably to the respective binding sites than its longer-chain Gln analog. The results obtained shed additional light on the intimate mechanism of the ligand-ligand and ligand-metal recognition in proteins and could be employed as guidelines in protein engineering and design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-017-3233-z | DOI Listing |
ACS Omega
December 2024
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu 600127, India.
Electronic waste (e-waste) has become a significant environmental concern worldwide due to the rapid advancement of technology and short product lifecycles. Waste-printed electronic boards (WPCBs) contain valuable metals and semiconductors; among them, tin can be recycled and repurposed for sustainable material production. This study presents a potential ecofriendly methodology for the recovery of tin from WPCBs in the form of tin oxide nanostructured powders.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
The reported copper nanoclusters (Cu NCs) of either Cu or Cu or mixed valence (MV) Cu/Cu or Cu/Cu characters are found to be stabilized with a discrete set of ligand donors; hence, analogous Cu NCs with a common architecture supported by the same or nearly the same donor set that exhibit different MV states of Cu, such as Cu/Cu and Cu/Cu, are unknown. Such a series of highest nuclearity copper clusters supported by aromatic thiol-S donor ligands, namely [(L4)CuI15Cu(μ-S)](PF) (1), [(L4)CuI15Cu(μ-S)]ClO·8CH (2) and [(L4)CuI15Cu(DMF)](PF)·CHOH·2CH (3), where L = 2-((3-X-thiophen)-(2-yl-methylene)amino)-4-(trifluoromethyl)benzenethiol (X = H/Me), have been synthesized and their electronic structural properties have been examined and reported herein. The Cu NCs, 1 and 2, feature a central sulfido-S (S) bridged tetracopper SCu core inside a sphere-shaped CuS truncated octahedron.
View Article and Find Full Text PDFChemistry
November 2024
National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.
The transformation of carbon dioxide (CO) into high-value chemicals is a significant step towards achieving the goal of "carbon neutrality". α-methylene cyclic carbonate, as an intermediate for the synthesis of many important organic compounds, is widely employed in industrial productions. In this work, a series of ionic porous organic polymers (IPOPs) with different basic-functionalized anions were successfully synthesized and adjusted to have certain BET surface areas and high contents of ion sites by post-modification.
View Article and Find Full Text PDFACS Omega
November 2024
BioAI Drug Safety Prediction Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo 6701033, Israel.
Liver 3D cell models are regularly employed as a screening platform for predicting the metabolic safety of drugs, by monitoring the physiological responses of the spheroids, through the measurement of relevant markers of normal liver physiology, notably glucose. Measuring glucose levels within the spheroids and their surroundings provides insight into the metabolic homeostasis of liver cells and may be employed as an indication of potential drug-induced toxicity. Several ortho-aminomethyl phenylboronic acid (PDBA) glucose sensors have been developed.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China. Electronic address:
A novel extra-long carbon-chain salamo-like fluorescent chemical probe DNS (named as 2,2'-[1,10-(decanedioxy)bis(nitromethyldyne)]dinaphthol) containing ten methylene groups was synthesized based on the 2-hydroxy-1-naphthylaldehyde unit. Research has shown that the fluorescent probe DNS can achieve efficient and selective recognition of CO anions, with a detection limit LOD=1.59 × 10 M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!