A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors.

Lab Chip

Department of Chemical & Biomolecular Engineering, University of Houston, USA. and Department of Biology & Biochemistry, University of Houston, USA and Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Campus Monterrey, Mexico.

Published: March 2017

Through their computational power and connectivity, smartphones are poised to rapidly expand telemedicine and transform healthcare by enabling better personal health monitoring and rapid diagnostics. Recently, a variety of platforms have been developed to enable smartphone-based point-of-care testing using imaging-based readout with the smartphone camera as the detector. Fluorescent reporters have been shown to improve the sensitivity of assays over colorimetric labels, but fluorescence readout necessitates incorporating optical hardware into the detection system, adding to the cost and complexity of the device. Here we present a simple, low-cost smartphone-based detection platform for highly sensitive luminescence imaging readout of point-of-care tests run with persistent luminescent phosphors as reporters. The extremely bright and long-lived emission of persistent phosphors allows sensitive analyte detection with a smartphone by a facile time-gated imaging strategy. Phosphors are first briefly excited with the phone's camera flash, followed by switching off the flash, and subsequent imaging of phosphor luminescence with the camera. Using this approach, we demonstrate detection of human chorionic gonadotropin using a lateral flow assay and the smartphone platform with strontium aluminate nanoparticles as reporters, giving a detection limit of ≈45 pg mL (1.2 pM) in buffer. Time-gated imaging on a smartphone can be readily adapted for sensitive and potentially quantitative testing using other point-of-care formats, and is workable with a variety of persistent luminescent materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476460PMC
http://dx.doi.org/10.1039/c6lc01167eDOI Listing

Publication Analysis

Top Keywords

persistent luminescent
12
low-cost smartphone-based
8
platform highly
8
highly sensitive
8
point-of-care testing
8
luminescent phosphors
8
time-gated imaging
8
detection
5
smartphone-based platform
4
sensitive
4

Similar Publications

Superior Multimodal Luminescence in a Stable Single-Host Nanomaterial with Large-Scale Synthesis for High-Level Anti-Counterfeiting and Encryption.

Adv Sci (Weinh)

January 2025

Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.

Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.

View Article and Find Full Text PDF

Phagocytosis by macrophages decreases the radiance of bioluminescent Staphylococcus aureus.

BMC Microbiol

January 2025

Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, The Netherlands.

Article Synopsis
  • The study investigates how the bioluminescence of Staphylococcus aureus changes when it is engulfed by macrophages, showing a reduction in light production compared to bacteria in culture.
  • The bacterial count remains stable during this process, but bioluminescence increases again when bacteria are released after macrophage cell death or when fresh macrophages are added.
  • These findings highlight the need to consider intracellular residency effects on bioluminescence when using imaging techniques to study infections in live animals.
View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) is an emerging field with significant applications in molecular electronics, optical materials, and chiroptical sensing. Achieving efficient CPL emission in organic systems remains a major challenge, particularly in the development of materials with high fluorescence quantum yields (Φ) and large luminescence dissymmetry factors (g). Herein, we report the efficient synthesis of shape-persistent tetraphenylethylene macrocycles and investigate its potential as a CPL material.

View Article and Find Full Text PDF

Technological advancements have intensified the demand for effective counterfeiting protection. This work presents multi-level security features in a (Ca,Zn)TiO:Pr,Er phosphor. A dual doping strategy synergistically results in dynamically changing luminescence emission.

View Article and Find Full Text PDF

Multi-Dimensional Color Tunable Long Persistent Luminescence in Metal Halide-Based CPs Through Precise Manipulation of Electronic and Steric Effects.

Small

January 2025

Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

Regulating strategies for long persistent luminescence (LPL) are always in high demand. Herein, a series of coordination polymers (CPs) (SUST-Z1-Z4) are fabricated using 1,10-phenanthroline derivatives involving different substituents (─H, ─CH, ─Cl, and ─Br) as ligands, respectively. Crystallographic data demonstrate that these CPs adopt alternating arrangements of cadmium halide chains and π-conjugated ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!