Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real-time fMRI - A pilot study.

Neuroimage Clin

Affidea CDRC - Centre Diagnostique Radiologique de Carouge, Clos de la Fonderie 1, 1227 Carouge, Switzerland; Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden; Department of Neuroradiology, University Hospital Freiburg, Germany; Faculty of Medicine of the University of Geneva, Switzerland.

Published: November 2017

The emerging technique of real-time fMRI neurofeedback trains individuals to regulate their own brain activity via feedback from an fMRI measure of neural activity. Optimum feedback presentation has yet to be determined, particularly when working with clinical populations. To this end, we compared continuous against intermittent feedback in subjects with tinnitus. Fourteen participants with tinnitus completed the whole experiment consisting of nine runs (3 runs × 3 days). Prior to the neurofeedback, the target region was localized within the auditory cortex using auditory stimulation (1 kHz tone pulsating at 6 Hz) in an ON-OFF block design. During neurofeedback runs, participants received either continuous (n = 7, age 46.84 ± 12.01, Tinnitus Functional Index (TFI) 49.43 ± 15.70) or intermittent feedback (only after the regulation block) (n = 7, age 47.42 ± 12.39, TFI 49.82 ± 20.28). Participants were asked to decrease auditory cortex activity that was presented to them by a moving bar. In the first and the last session, participants also underwent arterial spin labeling (ASL) and resting-state fMRI imaging. We assessed tinnitus severity using the TFI questionnaire before all sessions, directly after all sessions and six weeks after all sessions. We then compared neuroimaging results from neurofeedback using a general linear model (GLM) and region-of-interest analysis as well as behavior measures employing a repeated-measures ANOVA. In addition, we looked at the seed-based connectivity of the auditory cortex using resting-state data and the cerebral blood flow using ASL data. GLM group analysis revealed that a considerable part of the target region within the auditory cortex was significantly deactivated during neurofeedback. When comparing continuous and intermittent feedback groups, the continuous group showed a stronger deactivation of parts of the target region, specifically the secondary auditory cortex. This result was confirmed in the region-of-interest analysis that showed a significant down-regulation effect for the continuous but not the intermittent group. Additionally, continuous feedback led to a slightly stronger effect over time while intermittent feedback showed best results in the first session. Behaviorally, there was no significant effect on the total TFI score, though on a descriptive level TFI scores tended to decrease after all sessions and in the six weeks follow up in the continuous group. Seed-based connectivity with a fixed-effects analysis revealed that functional connectivity increased over sessions in the posterior cingulate cortex, premotor area and part of the insula when looking at all patients while cerebral blood flow did not change significantly over time. Overall, these results show that continuous feedback is suitable for long-term neurofeedback experiments while intermittent feedback presentation promises good results for single session experiments when using the auditory cortex as a target region. In particular, the down-regulation effect is more pronounced in the secondary auditory cortex, which might be more susceptible to voluntary modulation in comparison to a primary sensory region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278116PMC
http://dx.doi.org/10.1016/j.nicl.2016.12.023DOI Listing

Publication Analysis

Top Keywords

auditory cortex
32
intermittent feedback
20
continuous intermittent
16
target region
16
continuous
9
auditory
9
cortex
9
feedback
9
cortex activity
8
real-time fmri
8

Similar Publications

Individual differences in how the brain responds to novelty are present from infancy. A common method of studying novelty processing is through event-related potentials (ERPs). While ERPs possess millisecond precision, spatial resolution remains poor, especially in infancy.

View Article and Find Full Text PDF

Plastic changes in the brain are primarily limited to early postnatal periods. Recovery of adult brain plasticity is critical for the effective development of therapies. A brief (1-2 weeks) duration of visual deprivation (dark exposure, DE) in adult mice can trigger functional plasticity of thalamocortical and intracortical circuits in the primary auditory cortex suggesting improved sound processing.

View Article and Find Full Text PDF

The visual word form area (VWFA) is a region in the left ventrotemporal cortex (VTC) whose specificity remains contentious. Using precision fMRI, we examine the VWFA's responses to numerous visual and nonvisual stimuli, comparing them to adjacent category-selective visual regions and regions involved in language and attentional demand. We find that VWFA responds moderately to non-word visual stimuli, but is unique within VTC in its pronounced selectivity for visual words.

View Article and Find Full Text PDF

Perception and production of music and speech rely on auditory-motor coupling, a mechanism which has been linked to temporally precise oscillatory coupling between auditory and motor regions of the human brain, particularly in the beta frequency band. Recently, brain imaging studies using magnetoencephalography (MEG) have also shown that accurate auditory temporal predictions specifically depend on phase coherence between auditory and motor cortical regions. However, it is not yet clear whether this tight oscillatory phase coupling is an intrinsic feature of the auditory-motor loop, or whether it is only elicited by task demands.

View Article and Find Full Text PDF

Aim: Age-related hearing loss (ARHL) is a common problem among older adults and contributes to adverse health outcomes such as cognitive impairment. However, the neural mechanisms underlying ARHL remain unclear. We aimed to reveal the structural and metabolic (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!