Loss of Endothelial CXCR7 Impairs Vascular Homeostasis and Cardiac Remodeling After Myocardial Infarction: Implications for Cardiovascular Drug Discovery.

Circulation

From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.).

Published: March 2017

Background: Genome-wide association studies identified the association of the genetic locus (which encodes the chemokine CXCL12, also known as stromal cell-derived factor 1) with coronary artery disease and myocardial infarction (MI). Unlike CXCR4, the classic receptor for CXCL12, the function of CXCR7 (the most recently identified receptor) in vascular responses to injury and in MI remains unclear.

Methods: Tissue expression of CXCR7 was examined in arteries from mice and humans. Mice that harbored floxed and -promoter driven were treated with tamoxifen to induce endothelium-restricted deletion of CXCR7. The resulting conditional knockout mice and littermate controls were studied for arterial response to angioplasty wire injury and cardiac response to coronary artery ligation. The role of CXCR7 in endothelial cell proliferation and angiogenesis was determined in vitro with cells from mice and humans. The effects of adenoviral delivery of gene and pharmacological activation of CXCR7 were evaluated in mice subjected to MI.

Results: Injured arteries from both humans and mice exhibited endothelial CXCR7 expression. Conditional endothelial CXCR7 deletion promoted neointimal formation without altering plasma lipid levels after endothelial injury and exacerbated heart functional impairment after MI, with increased both mortality and infarct sizes. Mechanistically, the exacerbated responses in vascular and cardiac remodeling are attributable to the key role of CXCR7 in promoting endothelial proliferation and angiogenesis. Impressively, the impaired post-MI cardiac remodeling occurred with elevated levels of CXCL12, which was previously thought to mediate cardiac protection by exclusively engaging its cognate receptor, CXCR4. In addition, both gene delivery via left ventricular injection and treatment with a CXCR7 agonist offered cardiac protection after MI.

Conclusions: CXCR7 represents a novel regulator of vascular homeostasis that functions in the endothelial compartment with sufficient capacity to affect cardiac function and remodeling after MI. Activation of CXCR7 may have therapeutic potential for clinical restenosis after percutaneous coronary intervention and for heart remodeling after MI.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.116.023027DOI Listing

Publication Analysis

Top Keywords

cxcr7
12
endothelial cxcr7
12
cardiac remodeling
12
vascular homeostasis
8
myocardial infarction
8
coronary artery
8
mice humans
8
humans mice
8
role cxcr7
8
proliferation angiogenesis
8

Similar Publications

The causative effect of CXCR7 on experimental autoimmune prostatitis injury and fibrosis.

Int Immunopharmacol

January 2025

Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China. Electronic address:

Chronic prostatitis and Pelvic Pain syndrome (CP/CPPS) is an autoimmune inflammatory disease characterized by pelvic or perineal pain and infiltration of inflammatory cells in the prostate. C-X-C chemokine receptor type 7 (CXCR7) is an atypical chemokine receptor that has been shown to play a key role in inflammatory processes in prostate cancer. However, the role of CXCR7 in autoimmune prostate and immune regulation in CP/CPPS along with the mechanism of action for CXCR7 remains unclear.

View Article and Find Full Text PDF

Introduction: Glioblastoma is the most aggressive brain tumor, typically associated with poor prognosis. Its treatment is challenging due to the peculiar glioblastoma cell biology and its microenvironment complexity. Specifically, a small fraction of glioma stem cells within the tumor mass drives tumor growth and invasiveness by hijacking brain resident and immune cells.

View Article and Find Full Text PDF

Introduction: Abnormal activation of hypertrophic scar fibroblasts (HSF) plays an important role in the excessive fibrosis of hypertrophic scars (HS). However, the regulatory mechanism of HSF abnormal activation is not fully unclear. Early studies had shown that M2 macrophages were increased during scar formation.

View Article and Find Full Text PDF

Cardiorenal fibrosis is a common feature of chronic cardiovascular disease and recent data suggests that cytokines and chemokines may also drive fibrosis. Here we tested the hypothesis that CXCR7, a highly conserved chemokine receptor, contributes to cardiac and renal fibrosis. We generated an anti-mouse CXCR7-specific monoclonal antibody (CXCR7 mAb) and tested its anti-fibrotic actions in cardiorenal fibrosis induced using the deoxycorticosterone acetate/uni-nephrectomy (DOCA-UNX) model.

View Article and Find Full Text PDF

Palladium(II)-Catalyzed Site-Selective C(sp)-H Alkenylation of Oligopeptides.

Org Lett

November 2024

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

An innovative palladium-catalyzed alkenylation of peptides and vinyl iodides has been developed. This method does not require the introduction of a directing group and uses carboxylic acid groups as endogenous directing groups. It is noteworthy that two key building blocks for the ilamycins and CXCR7 modulators were prepared using our methodology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!