The neurotransmitter γ-amino butyric acid (GABA) has a fundamental role in CNS function and ionotropic (GABA) receptors that mediate many of the actions of GABA are important therapeutic targets. This study reports the mechanism of action of novel GABA antagonists based on a tricyclic oxazolo-2,3-benzodiazepine scaffold. These compounds are orthosteric antagonists of GABA on heteropentameric GABA receptors of αxβ2γ2 configuration expressed in HEK293 cells. In silico modelling predicted that the test compounds docked in the GABA binding-pocket and would interact with amino-acid residues in the α- and β-subunit interface that are known to be important for the binding of GABA. Intriguingly, optimal docking also required an interaction with the non-conserved amino-terminal segment of Loop-F of the α-subunit. Testing of a compound with altered regiochemistry of the oxazolone moiety supported the model with respect to the conserved GABA-interacting residues in vitro as well as in vivo. The prediction regarding loop-F was examined by replacing the amino-terminal variable segment of loop-F of the α5-subunit with the corresponding residues in the α1- and α2-subunits. When tested with the novel inhibitors, the receptors formed by the modified α5-subunits displayed the pharmacologic phenotype of the source of loop-F. In summary, these data show that the variable amino-terminal segment of loop-F of the α-subunit determines the pharmacologic selectivity of the novel tricyclic inhibitors of GABA receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2017.01.033DOI Listing

Publication Analysis

Top Keywords

gaba receptors
16
loop-f α-subunit
12
segment loop-f
12
gaba
10
α-subunit determines
8
determines pharmacologic
8
inhibitors gaba
8
amino-terminal segment
8
loop-f
6
receptors
5

Similar Publications

Tandospirone prevents anesthetic-induced respiratory depression through 5-HT receptor activation in rats.

Sci Rep

January 2025

Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Taiping Road 27, Beijing, 100850, China.

Respiratory depression is a side effect of anesthetics. Treatment with specific antagonists or respiratory stimulants can reverse respiratory depression caused by anesthetics; however, they also interfere with the sedative effects of anesthetics. Previous studies have suggested that tandospirone may ameliorate respiratory depression without affecting the sedative effects of anesthetics.

View Article and Find Full Text PDF

Differential Expression of GABA Receptor-Related Genes in Alzheimer's Disease and the Positive Regulatory Role of Aerobic Exercise-From Genetic Screening to D-gal-induced AD-like Pathology Model.

Neuromolecular Med

December 2024

Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China.

Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals.

View Article and Find Full Text PDF

Gene Deficiency of δ Subunit-Containing GABA Receptor in mPFC Lead Learning and Memory Impairment in Mice.

Neurochem Res

January 2025

Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.

Maintaining GABAergic inhibition within physiological limits in the medial prefrontal cortex (mPFC) is critical for working memory. While synaptic GABAR typically mediate the primary component of mPFC inhibition, the role of extrasynaptic δ-GABAR in working memory remains unclear. To investigate this, we used fiber photometry to examine the effects of δ-GABAR in freely moving mice.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Neuroscience Institute at JFK Medical Center, Edison, NJ, USA; Hackensack Meridian School of Medicine, Nutley, NJ, USA.

Article Synopsis
  • Disease-associated microglia (DAM) play a critical role in Alzheimer's disease (AD), impacting neuroinflammation and synapse loss, but their activation mechanisms remain unclear beyond traditional classifications.
  • Researchers studied GABA receptor 1 (GABAR1) in microglia from human and mouse models, using various experimental techniques to explore its role in AD pathology, particularly focusing on sleep impairment and microglial behavior.
  • The study revealed that loss of GABAR1 is linked to increased AD pathology, and restoring GABAR1 signaling improved microglial function and reduced AD-related symptoms in experimental models, highlighting its potential as a therapeutic target.
View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

San Francisco VA Medical Center, University of California San Francisco, San Francisco, CA, USA.

Background: Effective disease-modifying regimens for Alzheimer's Disease (AD) remain lacking due to insufficient understanding of its pathogenic drivers. It was shown previously that upregulation of the calcium-sensing receptor (CaSR), an excitatory family C GPCR, induces neurodegeneration by interfering with the inhibitory γ-aminobutyric acid (GABA) signaling following acute brain injuries (Ann_Clin_Transl_Neurol, 1:851-66). Herein, we determined whether CaSR overexpression is causally associated with the AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!