In this study, we developed a sandwich aptamer-based screen-printed carbon electrode (SPCE) using chronoamperometry for the detection of cardiac troponin I (cTnI), one of the promising biomarkers for acute myocardial infarction (AMI). Disposable three-electrode SPCEs were manufactured using a screen printer, and various modifications such as electrodeposition of gold nanoparticles and electropolymerization of conductive polymers were performed. From the bare electrode to the aptamer-immobilized SPCE, all processes were monitored and analyzed via various techniques such as cyclic voltammetry, electrochemical impedance spectroscopy, and X-ray photoelectron spectroscopy. The quantification of cTnI was conducted based on amperometric signals from the catalytic reaction between hydrazine and HO. The fabricated aptasensor in a buffer, as well as in a serum-added solution, exhibited great analytical performance with a dynamic range of 1-100 pM (0.024-2.4ng/mL) and a detection limit of 1.0 pM (24pg/mL), which is lower than the existing cutoff values (40-700pg/mL). Furthermore, the developed sensor showed high sensitivity to cTnI over other proteins. It is anticipated that this potable SPCE aptasensor for cTnI will become an innovative diagnostic tool for AMI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2016.12.091 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!