A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Longitudinal analysis of treatment-induced genomic alterations in gliomas. | LitMetric

Background: Glioblastoma multiforme (GBM) constitutes nearly half of all malignant brain tumors and has a median survival of 15 months. The standard treatment for these lesions includes maximal resection, radiotherapy, and chemotherapy; however, individual tumors display immense variability in their response to these approaches. Genomic techniques such as whole-exome sequencing (WES) provide an opportunity to understand the molecular basis of this variability.

Methods: Here, we report WES-guided treatment of a patient with a primary GBM and two subsequent recurrences, demonstrating the dynamic nature of treatment-induced molecular changes and their implications for clinical decision-making. We also analyze the Yale-Glioma cohort, composed of 110 whole exome- or whole genome-sequenced tumor-normal pairs, to assess the frequency of genomic events found in the presented case.

Results: Our longitudinal analysis revealed how the genomic profile evolved under the pressure of therapy. Specifically targeted approaches eradicated treatment-sensitive clones while enriching for resistant ones, generated due to chromothripsis, which we show to be a frequent event in GBMs based on our extended analysis of 110 gliomas in the Yale-Glioma cohort. Despite chromothripsis and the later acquired mismatch-repair deficiency, genomics-guided personalized treatment extended survival to over 5 years. Interestingly, the case displayed a favorable response to immune checkpoint inhibition after acquiring mismatch repair deficiency.

Conclusions: Our study demonstrates the importance of longitudinal genomic profiling to adjust to the dynamic nature of treatment-induced molecular changes to improve the outcomes of precision therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5290635PMC
http://dx.doi.org/10.1186/s13073-017-0401-9DOI Listing

Publication Analysis

Top Keywords

longitudinal analysis
8
dynamic nature
8
nature treatment-induced
8
treatment-induced molecular
8
molecular changes
8
yale-glioma cohort
8
genomic
5
analysis treatment-induced
4
treatment-induced genomic
4
genomic alterations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!