A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus.

Biosens Bioelectron

Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.

Published: May 2017

AI Article Synopsis

Article Abstract

Dengue virus is an arthropod-borne virus transmitted primarily by Aedes mosquitos and is major cause of disease in tropical and subtropical regions. Colloquially known as Dengue Fever, infection can cause hemorrhagic disorders and death in humans and non-human primates. We report a novel electronic biosensor based on a single-walled carbon nanotube network chemiresistive transducer that is functionalized with heparin for low-cost, label-free, ultra-sensitive, and rapid detection of whole dengue virus (DENV). Heparin, an analog of the heparan sulfate proteoglycans that are receptors for dengue virus during infection of Vero cells and hepatocytes, was used for the first time in a biosensor as a biorecognition element instead of traditional antibody. Detection of DENV in viral culture supernatant has similar sensitivity as the corresponding viral titer in phosphate buffer despite the presence of growth media and Vero cell lysate. The biosensor demonstrated sensitivity within the clinically relevant range for humans and infected Aedes aegypti. It has potential application in clinical diagnosis and can improve point-of-care diagnostics of dengue infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2017.01.017DOI Listing

Publication Analysis

Top Keywords

dengue virus
16
dengue
6
virus
5
heparin-functionalized carbon
4
carbon nanotube-based
4
nanotube-based affinity
4
biosensor
4
affinity biosensor
4
biosensor dengue
4
virus dengue
4

Similar Publications

Estimation and Characterization of Dengue Serotypes in Patients Presenting with Dengue Fever at Makkah Hospitals.

Trop Med Infect Dis

January 2025

Department of Research, PMO, Ministry Branch in Makkah Region, Ministry of Health (MOH), Makkah 21955, Saudi Arabia.

Dengue fever is caused by four common serotypes of the dengue virus (DENV-1, DENV-2, DENV-3, and DENV-4). Patients infected with one serotype may develop lifelong serotype-specific protective immunity. However, they remain susceptible to reinfection with the other serotypes, often increasing the risk of severe forms of dengue.

View Article and Find Full Text PDF

Objectives: Arboviruses pose significant public health threats worldwide, with Southeast Asia being a hotspot for these infections. This study aimed to reassess the incidence of dengue, Zika, and chikungunya viruses in patients clinically diagnosed with dengue in East Java, Indonesia in 2023.

Methods: The study included 108 patients admitted to hospitals in Jember, with blood samples collected on admission.

View Article and Find Full Text PDF

Neutrophil Extracellular Traps Contribute to the Disease Severity of Dengue Virus Infection.

J Arthropod Borne Dis

June 2024

Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, Pelita Harapan University, Tangerang, Indonesia.

Background: The spectrum of dengue infection ranges from asymptomatic or mild to severe disease. The pathogenic mechanisms are not fully understood. A viral infection can induce the neutrophil extracellular traps (NETs), and the excessive NETs lead to increased vascular permeability, coagulopathy, and platelet dysfunction, a hallmark of severe dengue.

View Article and Find Full Text PDF

Phytochemical-based nanosystems: recent advances and emerging application in antiviral photodynamic therapy.

Nanomedicine (Lond)

January 2025

Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia.

Phytochemicals are typically natural bioactive compounds or metabolites produced by plants. Phytochemical-loaded nanocarrier systems, designed to overcome bioavailability limitations and enhance therapeutic effects, have garnered significant attention in recent years. The coronavirus disease 2019 (COVID-19) pandemic has intensified interest in the therapeutic application of phytochemicals to combat viral infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!