A fast adenosine triphosphate (ATP)-depleting micellar system that is activated by intracellular redox for the codelivery of anticancer drug paclitaxel (PTX) and small interference RNA (siRNA) targeting polo-like kinase1 (PLK1) is developed to address the key challenges of multidrug-resistant (MDR) cancer therapy. The ATP-depleting micelle is self-assembled from a redox-responsive amphiphilic polymer (termed as bPEG-SS-P123-PEI (PSPP)) that is composed of biocompatible branched polyethylene glycol (PEG) with 8 arms (bPEG), ATP-depleting Pluronic P123 (P123), and cationic low molecular weight polyethylenimine (PEI) blocks. Upon critical micelle concentration, the PSPP unimer self-assembles into a well-ordered multilayered nanostructure and is able to load PTX and siRNA targeting PLK1. The cleavage of disulfide linkages at intracellular glutathione-rich reduction milieu not only promotes PTX and siRNA release, but also activates the fast ATP-depletion action that is critical in preventing intracellular PTX efflux by multidrug-resistant cancer cells. The combination of ATP depletion and siRNA inhibition by PSPP micelles is found to provide dual modulations for resensitizing multidrug-resistant cancer cells for PTX treatment. As a result, the codelivery of PTX and PLK1 siRNA exerts a stronger combinational effect against tumor growth in MDR tumor models in vivo. The development of fast ATP-depleting nanomicelle represents an original delivery strategy for the distinctive dual modulation of cancer MDR with spatial and temporal control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.201601293 | DOI Listing |
Sci Rep
January 2025
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
Antimicrobial resistance (AMR) is a major cause of death worldwide, with 1.27 M direct deaths from bacterial drug-resistant infections as of 2019. Dissemination of multidrug-resistant (MDR) bacteria in the environment, in conjunction with pharmapollution by active pharmaceutical ingredients (APIs), create and foster an environmental reservoir of AMR.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
This paper presents a lens-free imaging approach utilizing an array of light sources, capable of measuring the dielectric properties of many particles simultaneously. This method employs coplanar electrodes to induce velocity changes in flowing particles through dielectrophoretic forces, allowing the inference of individual particle properties from differential velocity changes. Both positive and negative forces are detectable.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Department of Clinical and Administrative Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA.
The feasibility of repurposing selective serotonin reuptake inhibitors as adjunctive antibacterial agents is an area of current investigation. We sought to evaluate if fluoxetine will achieve synergistic killing with relevant antibacterial drugs against skin and soft tissue pathogens and multidrug-resistant pathogens. : The MIC of fluoxetine was determined using broth microdilution for a diverse isolate collection of 21 organisms.
View Article and Find Full Text PDFAntibiotics (Basel)
November 2024
Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
Unlabelled: Despite recent advances, the regulation of anticancer and antimicrobial bioactive compound (AABC) production by leukocytes remains poorly understood. Here, we demonstrate that inactivation of the DNA- and RNA-based Teazeled receptors of the Universal Receptive System in human leukocytes generated so called "Leukocyte-Tells," which showed enhanced AABC production. Comprehensive analysis of the AABCs produced by Leukocyte-Tells based on LC/MS identified 707 unique or differentially produced peptide or non-peptide metabolites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!