Catalytic activity toward the oxygen reduction reaction (ORR) of platinum group metal-free (PGM-free) electrocatalysts integrated with an enzyme (bilirubin oxidase, BOx) in neutral media was studied. The effects of chemical and morphological characteristics of PGM-free materials on the enzyme enhancement of the overall ORR kinetics was investigated. The surface chemistry of the PGM-free catalyst was studied using X-ray Photoelectron Spectroscopy. Catalyst surface morphology was characterized using two independent methods: length-scale specific image analysis and nitrogen adsorption. Good agreement of macroscopic and microscopic morphological properties was found. Enhancement of ORR activity by the enzyme is influenced by chemistry and surface morphology of the catalyst itself. Catalysts with a higher nitrogen content, specifically pyridinic moieties, showed the greatest enhancement. Furthermore, catalysts with a higher fraction of surface roughness in the range of 3-5 nm exhibited greater performance enhancement than catalysts lacking features of this size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201601822 | DOI Listing |
Ovarian clear cell carcinoma (OCCC), particularly advanced or recurrent settings, is generally resistant to platinum-based chemotherapy, warranting novel therapeutic strategies. Mutations in the phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin kinase (PI3K/AKT/mTOR) pathway are frequently reported in OCCC. Therefore, we hypothesized that the PI3K/mTOR dual inhibitor, GSK458, and arsenic trioxide may exert synergistic anti-tumor effects on OCCC.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Oncology, Heyuan People's Hospital, Guangdong Provincial People's Hospital Heyuan Hospital, Heyuan, Guangdong, China.
Background: Chemoimmunotherapy is the first-line therapy for patients with recurrent or metastatic nasopharyngeal carcinoma (NPC) and is currently the main induction treatment option for patients with locoregionally advanced NPC. However, it remains unclear whether combining immunotherapy with standard induction chemotherapy enhances its efficacy. This study aimed to evaluate the efficacy, toxicity, and survival outcomes of induction chemoimmunotherapy in patients with locoregionally advanced NPC.
View Article and Find Full Text PDFNat Chem
January 2025
Instituto de Investigaciones Químicas, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain.
Open-shell systems based on first-row transition metals and their involvement in various catalytic processes are well explored. By comparison, mononuclear open-shell complexes of precious transition metals remain underdeveloped. This is particularly true for Ir complexes, as there is very limited information available regarding their application in catalysis.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Abteilung für Molekulare Physikalische Chemie, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany.
The binding of carbon dioxide to a transition metal is a complex phenomenon that involves a major redistribution of electron density between the metal center and the triatomic ligand. The chemical reduction of the ligand reveals itself unambiguously by an angular distortion of the CO-molecule as a result of the occupation of an anti-bonding π-orbital and a shift of its antisymmetric stretching vibration, ν, to lower wavenumbers. Here, we generate a carbon dioxide complex of the heavier group-10 metal, platinum, by ultrafast electronic excitation and cleavage of CO from the photolabile oxalate precursor, oxaliplatin, and monitored the ensuing primary dynamics with ultrafast mid-infrared spectroscopy.
View Article and Find Full Text PDFDalton Trans
January 2025
College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
A series of carbazolylpyridine ()-based 6/5/6 Pt(II) complexes featuring tetradentate ligands with nitrogen or oxygen atoms as bridging groups was designed and synthesized, and the bridging nitrogen atoms were derived from acridinyl (Ac), azaaceridine (AAc) and carbazole (Cz). Systematic experimental and theoretical studies reveal that the ligand structures have a significant effect on the electrochemical, photophysical and excited state properties of these complexes. Their oxidation processes mainly occur on the carbazole-Pt moieties, whereas the reduction processes typically occur on the electron-deficient pyridine (Py) moieties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!