Unlabelled: Invariant NKT (iNKT) cells can be activated to stimulate a broad inflammatory response. In murine models of sickle cell disease (SCD), interruption of iNKT cell activity prevents tissue injury from vaso-occlusion. NKTT120 is an anti-iNKT cell monoclonal antibody that has the potential to rapidly and specifically deplete iNKT cells and, potentially, prevent vaso-occlusion. We conducted an open-label, multi-center, single-ascending-dose study of NKTT120 to determine its pharmacokinetics, pharmacodynamics and safety in steady-state patients with SCD. Doses were escalated in a 3+3 study design over a range from 0.001 mg/kg to 1.0 mg/kg. Twenty-one adults with SCD were administered NKTT120 as part of 7 dose cohorts. Plasma levels of NKTT120 predictably increased with higher doses. Median half-life of NKTT120 was 263 hours. All subjects in the higher dose cohorts (0.1 mg/kg, 0.3 mg/kg, and 1 mg/kg) demonstrated decreased iNKT cells below the lower limit of quantification within 6 hours after infusion, the earliest time point at which they were measured. In those subjects who received the two highest doses of NKTT120 (0.3, 1 mg/kg), iNKT cells were not detectable in the peripheral blood for a range of 2 to 5 months. There were no serious adverse events in the study deemed to be related to NKTT120. In adults with SCD, NKTT120 produced rapid, specific and sustained iNKT cell depletion without any infusional toxicity or attributed serious adverse events. The next step is a trial to determine NKTT120's ability to decrease rate of vaso-occlusive pain episodes.
Trial Registration: clinicaltrials.gov NCT01783691.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5289534 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171067 | PLOS |
Front Immunol
January 2025
Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
Resistance to the currently available treatment paradigms is one of the main factors that contributes to poor outcomes in patients with advanced cervical cancer. Novel targeted therapy approaches might enhance the patient's treatment outcome and are urgently needed for this malignancy. While chimeric-antigen receptor (CAR)-based adoptive immunotherapy displays a promising treatment strategy for liquid cancers, their use against cervical cancer is largely unexplored.
View Article and Find Full Text PDFJ Cancer
January 2025
Shanghai TCM-Integrated Hospital, Shanghai university of TCM, Shanghai, China.
Killer Cell Lectin Like Receptor D1 (KLRD1) plays a crucial role in antitumor immunity. However, its expression patterns across various cancers, its relationship with patient prognosis, and its potential as an immunotherapy target remain inadequately understood. We analyzed KLRD1 expression across various cancer types using multi-omics data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases, correlating it with patient prognosis.
View Article and Find Full Text PDFBackground: Initial analysis of liver transplant biopsies in the INTERLIVER study (ClinicalTrials.gov; unique identifier NCT03193151) using rejection-associated transcripts failed to find an antibody-mediated rejection state (ie, rich in natural killer [NK] cells and with interferon-gamma effects). We recently developed an optimization strategy in lung transplants that isolated an NK cell-enriched rejection-like (NKRL) state that was molecularly distinct from T cell-mediated rejection (TCMR).
View Article and Find Full Text PDFTransplantation
January 2025
Medical School, University of Western Australia, Perth, WA, Australia.
Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells.
View Article and Find Full Text PDFMol Cells
January 2025
Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute of Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea. Electronic address:
The role of γδ T cells in antitumor responses has gained significant attention due to their unique major histocompatibility complex (MHC)-independent killing mechanisms, which distinguish them from conventional αβ T cells. Notably, γδ tumor-infiltrating lymphocytes (TILs) have been identified as favorable prognostic markers in various cancers. However, γδ TIL subsets, including Vδ1, Vδ2, and Vδ3, exhibit distinct prognostic implications and phenotypes from one another within the tumor microenvironment (TME).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!