We observed a transient noncentrosymmetric phase of ice at water/mineral interfaces during freezing, which enhanced the intensity of the IR-visible sum frequency generation intensity by up to 20-fold. The lifetime of the transient phase was several minutes. Since the most stable form of ice, hexagonal and cubic ice, are centrosymmetric, our study suggests the transient existence of stacking-disordered ice during the freezing process at water/mineral interfaces. Stacking-disordered ice, which has only been observed in bulk ice at temperatures lower than -20 °C, is a random mixture of layers of hexagonal ice and cubic ice. However, the transient phase at the ice/mineral interface was observed at temperatures as high as -1 °C. It suggests that the mineral surface may play a role in promoting and stabilizing the formation of stacking-disordered ice at the interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.6b02920 | DOI Listing |
Acta Bioeng Biomech
June 2024
1Institute of Applied Sciences, Academy of Physical Education, Kraków, Poland.
: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.
View Article and Find Full Text PDFEur J Cardiovasc Nurs
January 2025
Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung 20401, Taiwan.
Aims: Fluid accumulation is associated with poor outcomes in patients with heart failure (HF). After acute HF, HF nurses provide home care suggestions based on oedema status assessed at outpatient clinics. However, the pattern of serial oedema changes and their associations with patient outcomes are unknown.
View Article and Find Full Text PDFLife Metab
February 2025
New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China.
Glucose-stimulated insulin release from pancreatic β-cells is critical for maintaining blood glucose homeostasis. An abrupt increase in blood glucose concentration evokes a rapid and transient rise in insulin secretion followed by a prolonged, slower phase. A diminished first phase is one of the earliest indicators of β-cell dysfunction in individuals predisposed to develop type 2 diabetes.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
Background: Oncolytic viruses (OVs) are promising immunotherapeutics to treat immunologically cold tumors. However, research on the mechanism of action of OVs in humans and clinically relevant biomarkers is still sparse. To induce strong T-cell responses against solid tumors, TILT-123 (Ad5/3-E2F-d24-hTNFa-IRES-hIL2, igrelimogene litadenorepvec) was developed.
View Article and Find Full Text PDFFront Immunol
January 2025
IrsiCaixa, Badalona, Spain.
Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!