T antigen, mucin-type core 1 O-glycan, is highly expressed in the embryonic central nervous system (CNS) and co-localizes with a Drosophila CNS marker, BP102 antigen. BP102 antigen and Derailed, an axon guidance receptor, are localized specifically in the proximal axon segment of isolated primary cultured neurons, and their mobility is restricted at the intra-axonal boundary by a diffusion barrier. However, the preferred trafficking mechanism remains unknown. In this study, the major O-glycan T antigen was found to localize within the proximal compartments of primary cultured Drosophila neurons, whereas the N-glycan HRP antigen was not. Ultrastructural analysis by atmospheric scanning electron microscopy revealed that microtubule bundles cross one another at the intra-axonal boundary, and that T antigens form circular pattern before the boundary. We then identified Short stop (Shot), a crosslinker protein between F-actin and microtubules, as a mediator for the proximal localization of T antigens; null mutation of shot cancelled preferential localization of T antigens. Moreover, F-actin binding domain of Shot was required for their proximal localization. Together, our results allow us to propose a novel trafficking pathway where Shot crosslinks F-actin and microtubules around the intra-axonal boundary, directing T antigen-carrying vesicles toward the proximal plasma membrane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5288716 | PMC |
http://dx.doi.org/10.1038/srep41455 | DOI Listing |
Objective: Biophysical models of neural stimulation are a valuable approach to explaining the mechanisms of neuronal recruitment via applied extracellular electric fields. Typically, the applied electric field is estimated via a macroscopic finite element method solution and then applied to cable models as an extracellular voltage source. However, the field resolution is limited by the finite element size (typically 10's-100's of times greater than average neuronal cross-section).
View Article and Find Full Text PDFSci Rep
February 2017
Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji-shi, Tokyo 192-8577, Japan.
T antigen, mucin-type core 1 O-glycan, is highly expressed in the embryonic central nervous system (CNS) and co-localizes with a Drosophila CNS marker, BP102 antigen. BP102 antigen and Derailed, an axon guidance receptor, are localized specifically in the proximal axon segment of isolated primary cultured neurons, and their mobility is restricted at the intra-axonal boundary by a diffusion barrier. However, the preferred trafficking mechanism remains unknown.
View Article and Find Full Text PDFMicrosc Microanal
April 2014
6 Biomedical Research Institute and Information Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
High-throughput immuno-electron microscopy is required to capture the protein-protein interactions realizing physiological functions. Atmospheric scanning electron microscopy (ASEM) allows in situ correlative light and electron microscopy of samples in liquid in an open atmospheric environment. Cells are cultured in a few milliliters of medium directly in the ASEM dish, which can be coated and transferred to an incubator as required.
View Article and Find Full Text PDFCell
May 2012
Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
AnkyrinG (ankG) is highly enriched in neurons at axon initial segments (AISs) where it clusters Na(+) and K(+) channels and maintains neuronal polarity. How ankG becomes concentrated at the AIS is unknown. Here, we show that as neurons break symmetry, they assemble a distal axonal submembranous cytoskeleton, comprised of ankyrinB (ankB), αII-spectrin, and βII-spectrin, that defines a boundary limiting ankG to the proximal axon.
View Article and Find Full Text PDFNeuron
October 2009
Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan.
In the developing nervous system, distribution of membrane molecules, particularly axon guidance receptors, is often restricted to specific segments of axons. Such localization of membrane molecules can be important for the formation and function of neural networks; however, how this patterning within axons is achieved remains elusive. Here we show that Drosophila neurons in culture establish intra-axonal patterns in a cell-autonomous manner; several membrane molecules localize to either proximal or distal axon segments without cell-cell contacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!