Detection of circulating tumor cells (CTCs) in the blood circulation holds immense promise as it predicts the overall probability of patient survival. Therefore, CTC-based technologies are gaining prominence as a "liquid biopsy" for cancer diagnostics and prognostics. Here, we describe the design and synthesis of two distinct multicomponent magnetic nanosystems for rapid capture and detection of CTCs. The multifunctional Magneto-Dendrimeric Nano System (MDNS) composed of an anchoring dendrimer that is conjugated to multiple agents such as near infrared (NIR) fluorescent cyanine 5 NHS (Cy5), glutathione (GSH), transferrin (Tf), and iron oxide (FeO) magnetic nanoparticle (MNP) for simultaneous tumor cell-specific affinity, multimodal high resolution confocal imaging, and cell isolation. The second nanosystem is a self-propelled microrocket that is composed of carbon nanotube (CNT), chemically conjugated with targeting ligand such as transferrin on the outer surface and FeO nanoparticles in the inner surface. The multicomponent nanosystems described here are highly efficient in targeting and isolating cancer cells thus benefiting early diagnosis and therapy of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-6646-2_16 | DOI Listing |
Adv Mater
December 2024
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
Flexible films with optimal piezoelectric performance and water-triggered dissolution behavior are fabricated using the co-dissolution-evaporation method by mixing trimethylchloromethyl ammonium chloride (TMCM-Cl), CdCl, and polyethylene oxide (PEO, a water-soluble polymer). The resultant TMCM trichlorocadmium (TMCM-CdCl) crystal/PEO film exhibited the highest piezoelectric coefficient (d) compared to the films employing other polymers because PEO lacks electrophilic or nucleophilic side-chain groups and therefore exhibits relatively weaker and fewer bonding interactions with the crystal components. Furthermore, upon slightly increasing the amount of one precursor of TMCM-CdCl during co-dissolution, this component gained an advantage in the competition against PEO for bonding with the other precursor.
View Article and Find Full Text PDFNano Lett
November 2024
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
A major challenge for stem cell therapies, such as using mesenchymal stem cells to treat skin injuries, is the stable engraftment of exogenous cells and the maintenance of their regenerative capacities in the wound areas. DNA-based self-assembly strategies can be used for artificial and multifunctional cell surface engineering to stabilize and enhance their functions for therapeutic applications. Here, we developed DNA nanofiber-decorated stem cells, in which DNA-based, multivalent fiber-like structures were self-assembled in situ on the cell surfaces.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA.
J Mater Chem B
October 2024
Actorius Innovations and Research, Pune 411057, India.
Capturing circulating tumor cells (CTCs) from the peripheral blood of cancer patients, where they are disseminated among billions of other blood cells, is one of the most daunting challenge. We report OncoDiscover®, a multicomponent nano-system consisting of iron oxide (FeO) nanoparticles (NPs), polyamidoamine generation 4 dendrimers (PAMAM-G4-NH), graphene oxide (GO) sheets and an anti-epithelial cell adhesion molecule (anti-EpCAM) antibody (Fe-GSH-PAMAM-GO-EpCAM) for the selective and precise capture of CTCs. We further evaluated this system for therapeutically important oncotargets, exemplifying overexpression of the programmed death ligand 1 (PD-L1) as a functional assay on CTCs in cancer patients.
View Article and Find Full Text PDFNat Nanotechnol
December 2024
Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universtität München, Munich, Germany.
To control and enhance light-matter interactions at the nanoscale, two parameters are central: the spectral overlap between an optical cavity mode and the material's spectral features (for example, excitonic or molecular absorption lines), and the quality factor of the cavity. Controlling both parameters simultaneously would enable the investigation of systems with complex spectral features, such as multicomponent molecular mixtures or heterogeneous solid-state materials. So far, it has been possible only to sample a limited set of data points within this two-dimensional parameter space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!