Background: Routine clinical application of circulating tumour cells (CTCs) for blood based diagnostics is yet to be established. Despite growing evidence of their clinical utility for diagnosis, prognosis and treatment monitoring, the efficacy of a robust platform and universally accepted diagnostic criteria remain uncertain. We evaluate the diagnostic performance of a microfluidic CTC isolation platform using cytomorphologic criteria in patients undergoing lung cancer surgery.
Methods: Blood was processed from 51 patients undergoing surgery for known or suspected lung cancer using the ClearBridge ClearCell FX system (ClearBridge Biomedics, Singapore). Captured cells were stained on slides with haematoxylin and eosin (H&E) and independently assessed by two pathologist teams. Diagnostic performance was evaluated against the pathologists reported diagnosis of cancer from surgically obtained specimens.
Results: Cancer was diagnosed in 43.1% and 54.9% of all cases. In early stage primary lung cancer, between the two reporting teams, a positive diagnosis of CTCs was made for 50% and 66.7% of patients. The agreement between the reporting teams was 80.4%, corresponding to a kappa-statistic of 0.61±0.11 (P<0.001), indicating substantial agreement. Sensitivity levels for the two teams were calculated as 59% (95% CI, 41-76%) and 41% (95% CI, 24-59%), with a specificity of 53% for both.
Conclusions: The performance of the tested microfluidic antibody independent device to capture CTCs using standard cytomorphological criteria provides the potential of a diagnostic blood test for lung cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5233537 | PMC |
http://dx.doi.org/10.21037/atm.2016.12.28 | DOI Listing |
Sci Rep
December 2024
Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA.
Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!