Aim: To investigate the effect of high mobility group protein box-1 (HMGB1) siRNA on proliferation and apoptosis of retinoblastoma (Rb) cells.

Methods: The expression of HMGB1 in Rb cells were detected by real-time polymerase chain reaction (RT-PCR) and Western blot. Chemically synthesized HMGB1 siRNA was transfected into Y79 cells. The inhibitory rate was also examined by RT-PCR and Western blot. After HMGB1 siRNA transfection, the cell proliferation was analyzed by MTT, and cell apoptosis was detected by Caspase-3 active detection kit. Cell cycle distribution and apoptosis were detected by flow cytometry.

Results: The expression of HMGB1 significantly elevated in Rb cells (<0.01). After transfected by siRNA, the HMGB1 protein level of Y79 cells was significantly reduced (<0.01). After siRNA interference HMGB1, the proportion of proliferating cells reduced, and the proportion of quiescent cells increased (<0.05). In addition, apoptosis rate of Y79 cells increased from 2.03% to 9.10% after interfering with HMGB1 siRNA (<0.05).

Conclusion: Specific HMGB1 siRNA can inhibit the expression of HMGB1. The effect may be attributed to inhibit the proliferation and promote cell apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225345PMC
http://dx.doi.org/10.18240/ijo.2017.01.05DOI Listing

Publication Analysis

Top Keywords

hmgb1 sirna
12
proliferation apoptosis
8
apoptosis retinoblastoma
8
high mobility
8
mobility group
8
group protein
8
protein box-1
8
expression hmgb1
8
rt-pcr western
8
western blot
8

Similar Publications

Rationale: Acute kidney injury (AKI) is a clinical syndrome associated with a multitude of conditions. Although renal replacement therapy (RRT) remains the cornerstone of treatment for advanced AKI, its implementation can potentially pose risks and may not be readily accessible across all healthcare settings and regions. Elevated lactate levels are implicated in sepsis-induced AKI; however, it remains unclear whether increased lactate directly induces AKI or elucidates the underlying mechanisms.

View Article and Find Full Text PDF

Background: Chronic rhinosinusitis (CRS) is a global health issue, with some patients experiencing anxiety and depression-like symptoms. This study investigates the role of HMGB1 in anxiety and depression-like behaviors associated with the microglial Notch1/Hes-1 pathway in CRS mice.

Methods: A CRS mouse model was developed, and behavioral assessments were conducted to evaluate anxiety and depression-like behaviors.

View Article and Find Full Text PDF

Targeting PGAM5 attenuates airway inflammation in asthma by inhibiting HMGB1 release in bronchial epithelium.

Free Radic Biol Med

January 2025

Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address:

Article Synopsis
  • Previous studies linked high HMGB1 levels to the development of steroid-insensitive asthma caused by toluene diisocyanate (TDI), highlighting mitochondrial dysfunction in bronchial epithelia.
  • This study aims to determine if PGAM5, a mitochondrial protein, influences HMGB1 release in TDI-induced asthma by comparing its levels in asthma patients and healthy individuals and conducting various animal and in vitro experiments.
  • Findings showed that inhibiting PGAM5 reduced airway inflammation and HMGB1 release in TDI-exposed mice, illustrating a potential regulatory mechanism involving mitochondrial apoptosis-related processes.
View Article and Find Full Text PDF

The aim of this study was to reveal the mechanism of cold stimulation (CS)-bronchial epithelial cells (BECs) derived exosomes (CS-BECs-exo) aggravated sepsis induced acute lung injury (SALI). CS-BECs-exo were separated by differential centrifugation and were characterized. Proteomics, immunoprecipitation, and RAGE knockout (RAGE) mice were used to investigate the mechanism of CS-BECs-exo aggravated SALI.

View Article and Find Full Text PDF

Ionizable polymeric micelles (IPMs) for efficient siRNA delivery.

Nat Commun

January 2025

Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.

Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!