The present research aimed to analyze values of the autocorrelation function measured for different time values of ground reaction forces during stable upright standing. It was hypothesized that if recording of force in time depended on the quality and way of regulating force by the central nervous system (as a regulator), then the application of autocorrelation for time series in the analysis of force changes in time function would allow to determine regulator properties and its functioning. The study was performed on 82 subjects (students, athletes, senior and junior soccer players and subjects who suffered from lower limb injuries). The research was conducted with the use of two Kistler force plates and was based on measurements of ground reaction forces taken during a 15 s period of standing upright while relaxed. The results of the autocorrelation function were statistically analyzed. The research revealed a significant correlation between a derivative extreme and velocity of reaching the extreme by the autocorrelation function, described as gradient strength. Low correlation values (all statistically significant) were observed between time of the autocorrelation curve passing through 0 axis and time of reaching the first peak by the said function. Parameters computed on the basis of the autocorrelation function are a reliable means to evaluate the process of flow of stimuli in the nervous system. Significant correlations observed between the parameters of the autocorrelation function indicate that individual parameters provide similar properties of the central nervous system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5260638PMC
http://dx.doi.org/10.1515/hukin-2015-0140DOI Listing

Publication Analysis

Top Keywords

autocorrelation function
20
nervous system
12
autocorrelation
8
ground reaction
8
reaction forces
8
central nervous
8
function
7
time
6
balance maintenance
4
maintenance upright
4

Similar Publications

This paper introduces a novel approach for the offline estimation of stationary moving average processes, further extending it to efficient online estimation of non-stationary processes. The novelty lies in a unique technique to solve the autocorrelation function matching problem leveraging that the autocorrelation function of a colored noise is equal to the autocorrelation function of the coefficients of the moving average process. This enables the derivation of a system of nonlinear equations to be solved for estimating the model parameters.

View Article and Find Full Text PDF

Molecular dynamics work on thermal conductivity of SiGe nanotubes.

J Mol Model

January 2025

School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.

Context: SiGe nanotubes (SiGeNTs) hold significant promise for applications in nanosolar cells, optoelectronic systems, and interconnects, where thermal conductivity is critical to performance. This study investigates the effects of length, diameter, temperature, and axial strain on the thermal conductivity of armchair and zigzag SiGeNTs through molecular dynamics simulations. Results indicate that thermal conductivity increases with sample length due to ballistic heat transport and decreases with temperature as phonon scattering intensifies.

View Article and Find Full Text PDF

Goal: Current methodologies for assessing cerebral compliance using pressure sensor technologies are prone to errors and issues with inter- and intra-observer consistency. RAP, a metric for measuring intracranial compensatory reserve (and therefore compliance), holds promise. It is derived using the moving correlation between intracranial pressure (ICP) and the pulse amplitude of ICP (AMP).

View Article and Find Full Text PDF

Complex biological systems undergo sudden transitions in their state, which are often preceded by a critical slowing down of dynamics. This results in longer recovery times as systems approach transitions, quantified as an increase in measures such as the autocorrelation and variance. In this study, we analysed paediatric patients in intensive care for whom mechanical ventilation was discontinued through removal of the endotracheal tube (extubation).

View Article and Find Full Text PDF

Experiencing music often entails the perception of a periodic beat. Despite being a widespread phenomenon across cultures, the nature and neural underpinnings of beat perception remain largely unknown. In the last decade, there has been a growing interest in developing methods to probe these processes, particularly to measure the extent to which beat-related information is contained in behavioral and neural responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!