The adhesion of cells to the extracellular matrix is a hierarchical, force-dependent, multistage process that evolves at several temporal scales. An understanding of this complex process requires a precise measurement of forces and its correlation with protein responses in living cells. We present a method to quantitatively assess live cell responses to a local and specific mechanical stimulus. Our approach combines atomic force microscopy with fluorescence imaging. Using this approach, we evaluated the recruitment of adhesion proteins such as vinculin, focal adhesion kinase, paxillin, and zyxin triggered by applying forces in the nN regime to live cells. We observed in real time the development of nascent adhesion sites, evident from the accumulation of early adhesion proteins at the position where the force was applied. We show that the method can be used to quantify the recruitment characteristic times for adhesion proteins in the formation of focal complexes. We also found a spatial remodeling of the mature focal adhesion protein zyxin as a function of the applied force. Our approach allows the study of a variety of complex biological processes involved in cellular mechanotransduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4973664 | DOI Listing |
Cancers (Basel)
January 2025
Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK.
Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA. Electronic address:
Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization.
View Article and Find Full Text PDFMol Oncol
January 2025
Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Korea.
The dynamics of focal adhesions (FAs) are essential physiological processes involved in cell spreading, metastasis, and regulation of the actin cytoskeleton. FAs are complex structures comprising proteins, such as paxillin and zyxin, which interact with extracellular membranes and influence cell motility and morphology. Although related studies have been reported in various cancers, the function and molecular mechanisms of oral squamous cell carcinoma (OSCC) remain unknown.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany.
Purpose: This study evaluates the microRNA (miRNA) expression profile in primary limbal epithelial cells (pLECs) of patients with aniridia.
Methods: Primary human LECs were sampled and isolated from 10 patients with aniridia and 10 healthy donors. The miRNA profile was analyzed using miRNA microarrays.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!