An efficient boundary element formulation is proposed to solve three-dimensional exterior acoustic scattering problems with multi-directional periodicity. The multi-directional periodic acoustic problem is represented as a multilevel block Toeplitz matrix. By exploiting the Toeplitz structure, the computational time and storage requirements to construct and to solve the linear system of equations arising from the boundary element formulation are significantly reduced. The generalized minimal residual method is implemented to solve the linear system of equations. To efficiently calculate the matrix-vector product in the iterative algorithm, the original matrix is embedded into a multilevel block circulant matrix. A multi-dimensional discrete Fourier transform is then employed to accelerate the matrix-vector product. The proposed approach is applicable to a periodic acoustic problem for any arbitrary shape of the structure in both full space and half space. Two case studies involving sonic crystal barriers are presented. In the first case study, a sonic crystal barrier comprising rigid cylindrical scatterers is modeled. To demonstrate the effectiveness of the proposed technique, periodicity in one, two, or three directions is examined. In the second case study, the acoustic performance of a sonic crystal barrier with locally resonant C-shaped scatterers is studied.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4973908DOI Listing

Publication Analysis

Top Keywords

boundary element
12
sonic crystal
12
acoustic scattering
8
multi-directional periodic
8
element formulation
8
periodic acoustic
8
acoustic problem
8
multilevel block
8
solve linear
8
linear system
8

Similar Publications

Determination of the Minimum Uncut Chip Thickness of Ti-6Al-4V Titanium Alloy Based on Dead Metal Zone.

Micromachines (Basel)

November 2024

Key Laboratory of Rapid Development & Manufacturing Technology for Aircraft, Shenyang Aerospace University, Ministry of Education, Shenyang 110136, China.

In Ti-6Al-4V titanium alloy micro-machining, since the uncut chip thickness (UCT) is comparable to the radius of the tool cutting edge, there exists a minimum uncut chip thickness (MUCT), and when the UCT is smaller than the MUCT, the plowing effect dominates the cutting process, which seriously affects the machined surface quality and tool life. Therefore, the reliable prediction of the MUCT is of great significance. This paper used Deform to establish an orthogonal cutting simulation model, studied the effect of the dead metal zone (DMZ) on the micro-cutting material flow, determined the DMZ range, and proposed a new method for determining the MUCT based on the DMZ.

View Article and Find Full Text PDF

Shock wave boundary/layer interactions (SWBLIs) are critical in high-speed aerodynamic flows, particularly within supersonic regimes, where unsteady dynamics can induce structural fatigue and degrade vehicle performance. Conventional measurement techniques, such as pressure-sensitive paint (PSP), face limitations in frequency response, calibration complexity, and intrusive instrumentation. Similarly, MEMS-based sensors, like Kulite sensors, present challenges in terms of intrusiveness, cost, and integration complexity.

View Article and Find Full Text PDF

Shape Optimization and Experimental Investigation of Glue-Laminated Timber Beams.

Materials (Basel)

December 2024

Division of Structural Mechanics and Material Mechanics, Faculty of Civil Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.

This study investigated the optimal shape of glue-laminated timber beams using an analytical model of a slender beam, taking into account the anisotropy of its strength properties as well as boundary conditions at the oblique bottom face of the beam. A control theory problem was formulated in order to optimize the shape of the modeled beam. Two optimization tasks were considered: minimizing material usage (Vmin) for a fixed load-carrying capacity (LCC) of the beam and maximizing load-bearing capacity (Qmax) for a given volume of the beam.

View Article and Find Full Text PDF

Objective: Despite several surgical options, there has yet to be a consensus on the best treatment for femoral neck fracture (FNF) due to higher complication rates compared to other bone fractures. This study aims to examine the possible consequences and solution suggestions of changing screws during surgery for various reasons in FNF surgical treatment from a biomechanical perspective.

Method: FNF and treatment materials were analyzed biomechanically using a package program based on the finite element method (FEM).

View Article and Find Full Text PDF

The ability of nanofluids to improve heat transmission in thermal systems is well established. This work investigates the three-dimensional theoretical behavior of Darcy-Forchheimer nanofluids in tilted magnetohydrodynamics. In this study, the Soret effect, micro-motile organisms, thermophoresis, and heat radiation are also considered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!