Background: Mesenchymal stromal cells (MSC) are multipotent adult stem cells with immunomodulatory properties. They uniquely express HLA class I antigen at a low level, and do not express HLA class II. Hence, for allogeneic administration, donor to recipient matching is not required; yet a prolonged chimeric state does not occur. Contrary to haematopoietic stem cell transplantation, cytotoxic drug therapy is not required to harvest, or administer, cells. Key Messages: MSC are obtained from marrow, adipose tissue or placenta. In our centre, MSC are isolated from a 10 ml donor marrow aspirate, by virtue of their adherence to plastic. They are expanded in culture, cryopreserved, and subjected to strict quality controls before release for intravenous administration. These activities occur in a dedicated, nationally accredited, laboratory. Initial observations of allogeneic MSC efficacy were in graft-versus-host disease. Both autologous and allogeneic MSC have since been evaluated in biologic refractory luminal and fistulising Crohn's disease (CD). Data from early-phase studies have suggested efficacy for luminal disease when allogeneic MSC were given intravenously and also suggested efficacy for fistulising disease when either allogeneic or autologous MSC were administered into fistulas. MSC treatment is not reported to have caused serious adverse events. Although in vitro criteria for defining MSC exist, a major challenge lies in how to define MSC for clinical use. MSC function in vivo is likely to be dependent upon donor immunological characteristics, and widely varying manufacturing processes between laboratories. MSC dose, frequency of administration, stage of disease, and presence of concomitant immunosuppression also require to be defined.
Conclusions: MSC therapy may have future utility in CD, but considerable work is first required to determine appropriate phenotypic and functional characteristics of administered cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000449091 | DOI Listing |
Stem Cells Transl Med
December 2024
Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
Mesenchymal stromal/stem cells (MSCs) are promising candidates for regenerative medicine owing to their self-renewal properties, multilineage differentiation, immunomodulatory effects, and angiogenic potential. MSC spheroids fabricated by 3D culture have recently shown enhanced therapeutic potential. MSC spheroids create a specialized niche with tight cell-cell and cell-extracellular matrix interactions, optimizing their cellular function by mimicking the in vivo environment.
View Article and Find Full Text PDFMatrix Biol Plus
December 2024
Dept. of Dermatology, Venereology and Allergology, Medical Faculty, Leipzig University, Germany.
Bone consists of a complex mineralised matrix that is maintained by a controlled equilibrium of synthesis and resorption by different cell types. Hyaluronan (HA) is an important glycosaminoglycan in many tissues including bone. Previously, the importance of HA synthesis for bone development during embryogenesis has been shown.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, 632002, India.
Background: Sickle cell disease (SCD) and β-thalassemia patients with elevated gamma globin (HBG1/G2) levels exhibit mild or no symptoms. To recapitulate this natural phenomenon, the most coveted gene therapy approach is to edit the regulatory sequences of HBG1/G2 to reactivate them. By editing more than one regulatory sequence in the HBG promoter, the production of fetal hemoglobin (HbF) can be significantly increased.
View Article and Find Full Text PDFCureus
November 2024
Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA.
Pulmonary fibrosis (PF) is a medical condition that affects the lungs and causes scarring due to the deposition of excess fibrotic tissue. This is often preceded by various causes and can lead to long-term health consequences. The treatment of PF using mesenchymal stem cells (MSCs) to correct lung damage and decrease inflammation is a current focus of research.
View Article and Find Full Text PDFWorld J Cardiol
December 2024
Department of Geriatics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.
In this article, we evaluate the comparative efficacy and safety of mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and umbilical cord (UC-MSCs) in the treatment of heart failure and myocardial infarction. MSCs have gained importance as living bio drug due to their regenerative potential, with BM-MSCs being the most extensively studied. However, UC-MSCs offer unique advantages, such as noninvasive collection and fewer ethical concerns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!