Supercontinuum generation in a solid-state medium was investigated experimentally. A continuum covering 460 to 950 nm was obtained when 0.8 mJ/30 fs Ti:sapphire laser pulses were applied to seven thin fused silica plates at a 1 kHz repetition rate. The primary processes responsible for spectral broadening were self-phase modulation (SPM) and self-steepening, while SPM and self-focusing were balanced to optimize the spectral broadening and suppress the multiphoton process. The output was compressed to a 5.4 fs and a 0.68 mJ pulse, corresponding to two optical cycles and 0.13 TW of peak power.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.42.000474DOI Listing

Publication Analysis

Top Keywords

supercontinuum generation
8
spectral broadening
8
high-efficiency supercontinuum
4
generation solid
4
solid thin
4
thin plates
4
plates 01  tw
4
01  tw level
4
level supercontinuum
4
generation solid-state
4

Similar Publications

Nanoscale thickness Octave-spanning coherent supercontinuum light generation.

Light Sci Appl

January 2025

Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.

Coherent broadband light generation has attracted massive attention due to its numerous applications ranging from metrology, sensing, and imaging to communication. In general, spectral broadening is realized via third-order and higher-order nonlinear optical processes (e.g.

View Article and Find Full Text PDF

Small-molecule organic ice microfibers.

Sci Adv

January 2025

New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Small organic molecules are essential building blocks of our universe, from cosmic dust to planetary surfaces to life. Compared to their well-known gaseous and liquid forms that have been extensively studied, small organic molecules in the form of ice at low temperatures receive much less attention. Here, we show that supercooled small-molecule droplets can be drawn into highly uniform amorphous ice microfibers with lengths up to 5 cm and diameters down to 200 nm.

View Article and Find Full Text PDF

Supercontinuum generation in scintillator crystals.

Sci Rep

January 2025

Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.

We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.

View Article and Find Full Text PDF

Supercontinuum generation in optical fiber involves complex nonlinear dynamics, making optimization challenging, and typically relying on trial-and-error or extensive numerical simulations. Machine learning and metaheuristic algorithms offer more efficient optimization approaches. We report here an experimental study of supercontinuum spectral shaping by tuning the phase of the input pulses, different optimization approaches including a genetic algorithm, particle swarm optimizer, and simulated annealing.

View Article and Find Full Text PDF

We demonstrate that amplitude modulation of a high-peak-power femtosecond laser pulse allows to change fundamentally the frequency-angular structure (FAS) of the supercontinuum formed during the filamentation in both molecular and atomic gases. Particularly, modulation with a 4-hole mask forms an inverted pattern of conical emission (CE) with its predominance in the Stokes wing of the pulse spectrum. We explain this phenomenon as a joint effect of self-phase modulation and temporal pulse splitting of interfering beamlets formed by the modulating mask.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!