Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A method for enhancement of the sensitivity of a spin sensor based on an ensemble of nitrogen vacancy (NV) color centers was demonstrated. Gold nanoparticles (NPs) were deposited on the bulk diamond, which had NV centers distributed on its surface. The experimental results demonstrate that, when using this simple method, plasmon enhancement of the deposited gold NPs produces an improvement of ∼10 times in the quantum efficiency and has also improved the signal-to-noise ratio by approximately ∼2.5 times. It was also shown that more electrons participated in the spin sensing process, leading to an improvement in the sensitivity of approximately seven times; this has been proved by Rabi oscillation and optical detection of magnetic resonance (ODMR) measurements. The proposed method has proved to be a more efficient way to design an ensemble of NV centers-based sensors; because the result increases in the number of NV centers, the quantum efficiency and the contrast ratio could greatly increase the device's sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.42.000403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!