Double emulsions are very attractive systems for many reasons; the most important of these are their capacity to encapsulate hydrophilic and lipophilic molecules simultaneously in a single particle and their potentiality to protect fragile hydrophilic molecules from the continuous phase. Double emulsions represent a technology that is widely present down to the micrometer scale; however, double nanoemulsions, with their new potential applications as nanomedicines or diagnosis agents, currently present a significant challenge. In this study, we propose an original two-step approach for the fabrication of double nanoemulsions with a final size below 200 nm. The process consists of the formulation of a primary water-in-oil (w/O) nanoemulsion by high-pressure homogenization, followed by the re-emulsification of this primary emulsion by a low-energy method to preserve the double nanostructure. Various characterization techniques were undertaken to confirm the double structure and to evaluate the encapsulation efficiency of a small hydrophilic probe in the inner aqueous droplets. Complementary fluorescence confocal and cryo-TEM microscopy experiments were conducted to characterize and confirm the double structure of the double nanoemulsion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6sm02603f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!