Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy.

Beilstein J Nanotechnol

Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg.

Published: November 2016

The analysis of polymers by secondary ion mass spectrometry (SIMS) has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM), which uses finely focussed He or Ne beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation) code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 10 ions/cm. Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238654PMC
http://dx.doi.org/10.3762/bjnano.7.168DOI Listing

Publication Analysis

Top Keywords

depth profiling
12
ion species
12
profiling capabilities
8
primary ion
8
primary ions
8
lateral resolution
8
ions
6
ion
6
species
5
numerical investigation
4

Similar Publications

In this paper, we attempt to answer two questions: 1) which regions of the human brain, in terms of morphometry, are most strongly related to individual differences in domain-general cognitive functioning ( )? and 2) what are the underlying neurobiological properties of those regions? We meta-analyse vertex-wise -cortical morphometry (volume, surface area, thickness, curvature and sulcal depth) associations using data from 3 cohorts: the UK Biobank (UKB), Generation Scotland (GenScot), and the Lothian Birth Cohort 1936 (LBC1936), with the meta-analytic = 38,379 (age range = 44 to 84 years old). These morphometry associations vary in magnitude and direction across the cortex (|β| range = -0.12 to 0.

View Article and Find Full Text PDF

Comprehensive global proteome profiling that is amenable to high throughput processing will broaden our understanding of complex biological systems. Here, we evaluated two leading mass spectrometry techniques, Data Independent Acquisition (DIA) and Tandem Mass Tagging (TMT), for extensive protein abundance profiling. DIA provides label-free quantification with a broad dynamic range, while TMT enables multiplexed analysis using isobaric tags for efficient cross-sample comparisons.

View Article and Find Full Text PDF

Aging results in a progressive decline in physiological function due to the deterioration of essential biological processes, such as transcription and RNA splicing, ultimately increasing mortality risk. Although proteomics is emerging as a powerful tool for elucidating the molecular mechanisms of aging, existing studies are constrained by limited proteome coverage and only observe a narrow range of lifespan. To overcome these limitations, we integrated the Orbitrap Astral Mass Spectrometer with the multiplex tandem mass tag (TMT) technology to profile the proteomes of three brain tissues (cortex, hippocampus, striatum) and kidney in the C57BL/6JN mouse model, achieving quantification of 8,954 to 9,376 proteins per tissue (cumulatively 12,749 across all tissues).

View Article and Find Full Text PDF

Postoperative delirium (POD) represents a common neurological complication encountered predominantly among the elderly cohort undergoing surgical intervention for hip fractures. This phenomenon, particularly commonplace in geriatric populations with heightened preoperative risk profiles, pronounced comorbidities, and later stages of lifespan, poses complex clinical challenges. The impact of perioperative pharmacological interventions and anesthetic strategies on POD's emergence cannot be understated, as it may profoundly affect the length of hospital stays, rehabilitation milestones, and the overall mortality hazard.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is known for its high heterogeneity, presenting challenges in current clinical treatment strategies. Accurate subtyping and in-depth analysis of the molecular heterogeneity of GC at the molecular level are still not fully understood.

Methods: This study categorized GC into two subtypes based on apoptosis-related genes (ARGs) and investigated differences in tumor immune microenvironment, intratumoral microorganisms distribution, gene expression, and signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!