Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A simple method for calculating the productivity of chromatography processes was proposed based on the iso-resolution curve concept. The model separation system was polyphenol separations by polystyrene divinylbenzene resins with the ethanol-water mixture mobile phase. The distribution coefficient K was determined as a function of ethanol concentration I by linear gradient elution experiments. The HETP-mobile phase velocity u curves were determined as a function of I. Using K and HETP, the iso-resolution curve was calculated, from which the productivity was determined as a function of I. It was found that there is an optimum I, where the highest productivity with the minimum amount of mobile phase consumption is obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09168451.2017.1283210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!