New copper(I) and heteronuclear copper(I)-ruthenium(II) complexes: Synthesis, structural characterization and cytotoxicity.

J Inorg Biochem

Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal.

Published: April 2017

A new family of copper(I) complexes of general formula [Cu(dppe)(NN)] have been synthesized and fully characterized, with dppe=1.2-bis(diphenylphosphino)ethane and NN representing several bidentate heteroaromatic ligands: 2,2'-bipy=2.2'-bipyridine (1), Mebpy=4.4'-dimethyl-2,2'-bipyridine (2), dpytz=3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine (3), dpp=2.3-bis(2-pyridyl)pyrazine (4), and the metallaligand [Ru(η-CH)(PPh)(dpp)] (5), yielding the bimetallic copper(I)-ruthenium(II) complex [Cu(dppe)(μ-dpp)Ru(η-CH)(PPh)] (6). The single crystal structures of complexes (2) and (4) were determined by X-ray diffraction studies. All the complexes exhibit high cytotoxicity against the human cancer cells A2780 and MCF7 with IC values far lower than those found for the antitumor drug cisplatin in the same cell lines and even surpassing cisplatin resistance in the A2780cisR cells. They display IC values on the human embryonic kidney HEK293 non-tumoral cells of the same order of magnitude as those found for the tumoral cells. In the ovarian cells the compounds induce rapid production of reactive oxygen species (ROS) probably through mitochondrial pathways. According to the results reported here, these compounds can be considered as prospective antitumoral agents that deserve further evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2017.01.007DOI Listing

Publication Analysis

Top Keywords

cells
5
copperi heteronuclear
4
heteronuclear copperi-rutheniumii
4
complexes
4
copperi-rutheniumii complexes
4
complexes synthesis
4
synthesis structural
4
structural characterization
4
characterization cytotoxicity
4
cytotoxicity family
4

Similar Publications

Exosomes derived from umbilical cord mesenchymal stem cells promote healing of complex perianal fistulas in rats.

Stem Cell Res Ther

December 2024

National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China.

Background: Complex perianal fistulas, challenging to treat and prone to recurrence, often require surgical intervention that may cause fecal incontinence and lower quality of life due to large surgical wounds and potential sphincter damage. Human umbilical cord-derived MSCs (hUC-MSCs) and their exosomes (hUCMSCs-Exo) may promote wound healing.

Methods: This study assessed the efficacy, mechanisms, and safety of these exosomes in treating complex perianal fistulas in SD rats.

View Article and Find Full Text PDF

Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health.

Cardiovasc Diabetol

December 2024

Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.

Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.

View Article and Find Full Text PDF

scRNA + BCR-seq identifies proportions and characteristics of dual BCR B cells in the peritoneal cavity of mice and peripheral blood of healthy human donors across different ages.

Immun Ageing

December 2024

Department of Immunology, Center of Immuno-molecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.

The increased incidence of inflammatory diseases, infectious diseases, autoimmune disorders, and tumors in elderly individuals is closely associated with several well-established features of immunosenescence, including reduced B cell genesis and dampened immune responses. Recent studies have highlighted the critical role of dual receptor lymphocytes in tumors and autoimmune diseases. This study utilized shared data generated through scRNA-seq + scBCR-seq technology to investigate the presence of dual receptor-expressing B cells in the peritoneum of mouse and peripheral blood of healthy volunteers, and whether there are age-related differences in dual receptor B cell populations.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) exert multiple tumor-promoting functions and are key contributors to drug resistance. The mechanisms by which specific subsets of CAFs facilitate oxaliplatin resistance in colorectal cancer (CRC) have not been fully explored. This study found that THBS2 is positively associated with CAF activation, epithelial-mesenchymal transition (EMT), and chemoresistance at the pan-cancer level.

View Article and Find Full Text PDF

MicroRNA-668 alleviates renal fibrosis through PPARα/PGC-1α pathway.

Eur J Med Res

December 2024

Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China.

Background: The involvement of microRNA-668 (miR-668) in the onset and progression of renal fibrosis remains unclear. To this end, we aimed to explore the relevant mechanism of miR-668 in renal fibrosis.

Methods: C57BL/6 J male mice were randomly divided into sham-operated, unilateral ureteral obstruction (UUO), and UUO-fenofibrate groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!