Background & Objectives: Ventilator-associated pneumonia (VAP) is an important hospital-acquired infection with substantial mortality. Only a few studies are available from India addressing the microbiological aspects of VAP, which have been done with small study populations. This study was carried out in the intensive care units (ICUs) of a tertiary care hospital to assess the profile of pathogens and to determine the pattern of antimicrobial resistance.

Methods: This was a retrospective study of clinically suspected cases of VAP. Over a three year period, a total of 247 cases in 2011, 297 in 2012 and 303 in 2013 admitted in ICUs on mechanical ventilation with clinical evidence of VAP were included in our study. The endotracheal aspirate samples from these suspected cases were subjected to quantitative culture technique, and colony count of ≥10[5] colony forming units/ml was considered significant. Antimicrobial susceptibility test for the isolates was done.

Results: VAP rates of 44.1, 43.8 and 26.3 were seen in 2011, 2012 and 2013, respectively. In all the three years, non-fermentative Gram-negative bacilli were the predominant organisms, followed by Pseudomonas spp. and Klebsiella spp. Staphylococcus aureus exhibited a downwards trend in prevalence from 50.0 per cent in 2011 to 34.9 per cent in 2013. An increase in vancomycin-resistant enterococci was seen from 4.3 per cent in 2012 to 8.3 per cent in 2013, while methicillin resistance amongst the S. aureus crossed the 50 per cent mark in 2013. An increasing trend in resistance was shown by Pseudomonas spp. for piperacillin-tazobactam (PTZ), amikacin and imipenem (IPM). For the non-fermenters, resistance frequency remained very high except for IPM (33.1%) and polymyxin-B (2.4%).

Interpretation & Conclusions: Our findings show VAP as an important problem in the ICU setting. The incidence of multidrug-resistant pathogens was on the rise. The resistance pattern of these pathogens can help an institution to formulate effective antimicrobial policy. To have a comprehensive pan-India picture, multicentric studies are needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320850PMC
http://dx.doi.org/10.4103/0971-5916.198679DOI Listing

Publication Analysis

Top Keywords

ventilator-associated pneumonia
8
tertiary care
8
care hospital
8
suspected cases
8
pseudomonas spp
8
cent 2013
8
vap
6
0
5
cent
5
antibiotic resistance
4

Similar Publications

Cold atmospheric plasma (CAP) has antimicrobial properties and is also known to stimulate the immune system. These properties could be useful for the development of a novel therapeutic or preventive strategy against respiratory infections in the upper respiratory tract (URT) such as ventilator-associated pneumonia (VAP) without inducing an immune overreaction. This study investigated the cellular responses of polymorphonuclear neutrophils (PMNs) after exposure to CAP in a three-dimensional (3D) model of the URT.

View Article and Find Full Text PDF

Aim: To determine the effect of long-term tobramycin (TOB) inhalation therapy on recurrent pneumonia among ventilator-dependent children with profound neurological disabilities.

Methods: TOB inhalation was performed in eight series of trials in seven ventilator-dependent children who had intratracheal Pseudomonas aeruginosa and suffered from recurrent pneumonia. Their age at the initiation of therapy was 68 ± 50 months (mean ± standard deviation), whereas the duration of treatment was 30 ± 22 months.

View Article and Find Full Text PDF

Background Ventilator-associated pneumonia (VAP) is a common and severe hospital-acquired infection, and oral care is an effective preventive measure. However, the compliance and quality of oral care among intensive care unit (ICU) nurses need improvement. Methods This quasi-experimental study was conducted in two ICUs at the first affiliated hospital of Gannan Medical University, Ganzhou, China, involving 74 ICU nurses.

View Article and Find Full Text PDF

Introduction: Infection control in intensive care units (ICUs) is crucial due to the high risk of healthcare-associated infections (HAIs), which can increase patient morbidity, mortality, and costs. Effective measures such as hand hygiene, use of personal protective equipment (PPE), patient isolation, and environmental cleaning are vital to minimize these risks. The integration of artificial intelligence (AI) offers new opportunities to enhance infection control, from predicting outbreaks to optimizing antimicrobial use, ultimately improving patient safety and care in ICUs.

View Article and Find Full Text PDF

Background: Ventilator-associated pneumonia (VAP) is a common nosocomial infection in ICU, significantly associated with poor outcomes. However, there is currently a lack of reliable and interpretable tools for assessing the risk of in-hospital mortality in VAP patients. This study aims to develop an interpretable machine learning (ML) prediction model to enhance the assessment of in-hospital mortality risk in VAP patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!