China has repeatedly been the subject of genetic studies to elucidate its prehistoric and historic demography. While some studies reported a genetic distinction between Northern and Southern Han Chinese, others showed a more clinal picture of small differences within China. Here, we investigated the distribution of Y chromosome variation along administrative as well as ethnic divisions in the mainland territory of the People's Republic of China, including 28 administrative regions and 19 recognized Chinese nationalities, to assess the impact of recent demographic processes. To this end, we analyzed 37,994 Y chromosomal 17-marker haplotype profiles from the YHRD database with respect to forensic diversity measures and genetic distance between groups defined by administrative boundaries and ethnic origin. We observed high diversity throughout all Chinese provinces and ethnicities. Some ethnicities, including most prominently Kazakhs and Tibetans, showed significant genetic differentiation from the Han and other groups. However, differences between provinces were, except for those located on the Tibetan plateau, less pronounced. This discrepancy is explicable by the sizeable presence of Han speakers, who showed high genetic homogeneity all across China, in nearly all studied provinces. Furthermore, we observed a continuous genetic North-South gradient in the Han, confirming previous reports of a clinal distribution of Y chromosome variation and being in notable concordance with the previously observed spatial distribution of autosomal variation. Our findings shed light on the demographic changes in China accrued by a fast-growing and increasingly mobile population.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-017-1759-xDOI Listing

Publication Analysis

Top Keywords

distribution chromosome
8
chromosome variation
8
genetic
7
china
6
revisiting male
4
male genetic
4
genetic landscape
4
landscape china
4
china multi-center
4
multi-center study
4

Similar Publications

PARL regulates porcine oocyte meiotic maturation by mediating mitochondrial activity.

Theriogenology

January 2025

Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China. Electronic address:

Article Synopsis
  • PARL is a rhomboid membrane protein essential for mitochondrial function and plays a significant role in oocyte maturation, though its specific effects are not well understood.
  • Inhibiting PARL expression resulted in reduced polar body extrusion and abnormal embryo development, along with negative impacts on mitochondrial activity and increased oxidative stress in porcine oocytes.
  • PARL deficiency also altered the expression of key genes related to mitochondrial function and DNA integrity, emphasizing its critical role in the maturation process of oocytes.
View Article and Find Full Text PDF

Heat stress transcription factors (HSFs) play a critical role in orchestrating cellular responses to elevated temperatures and various stress conditions. While extensively studied in model plants, the gene family in remains unexplored, despite the availability of its sequenced genome. In this study, we employed bioinformatics approaches to identify 21 genes within the genome, revealing their uneven distribution across chromosomes.

View Article and Find Full Text PDF

TCP is a plant-specific transcription factor that plays an important role in plant growth and development. In this study, we used bioinformatics to identify the entire genome of the gene family in Bat, and we analyzed the expression characteristics of genes under UV-B radiation using qRT-PCR. The results were as follows: (1) 24 members of the gene family were identified in , evenly distributed on its 24 chromosomes.

View Article and Find Full Text PDF

In the present study, we aimed to investigate intratumoral karyotype diversity as well as the estrogen/progesterone effect on the cytogenetic profile of uterine leiomyomas (ULs). A total of 15 UL samples obtained from 15 patients were cultured in the media supplemented with estrogen and/or progesterone and without adding hormones. Conventional cytogenetic analysis of culture samples revealed clonal chromosomal abnormalities in 11 out of 15 ULs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!