Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5262462 | PMC |
http://dx.doi.org/10.1126/sciadv.1601335 | DOI Listing |
ISA Trans
January 2025
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Transformative High-end Manufacturing Equipment and Technology, Tsinghua University, Beijing, 100084, China. Electronic address:
Multi-axis contouring control is crucial for ultraprecision manufacturing industries, contributing to meeting the ever-increasingly stringent performance requirements. In this article, a novel contouring adaptive real-time iterative compensation (CARIC) method is proposed to achieve extreme multi-axis contouring accuracy, remarkable trajectory generalization, disturbance rejection, and parametric adaptation simultaneously. Specifically, control actions generated by CARIC consist of robust feedback, adaptive feedforward, and online trajectory compensation components.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Psychology, City College, City University of New York, New York, NY 10031.
Looking at the world often involves not just seeing things, but feeling things. Modern feedforward machine vision systems that learn to perceive the world in the absence of active physiology, deliberative thought, or any form of feedback that resembles human affective experience offer tools to demystify the relationship between seeing and feeling, and to assess how much of visually evoked affective experiences may be a straightforward function of representation learning over natural image statistics. In this work, we deploy a diverse sample of 180 state-of-the-art deep neural network models trained only on canonical computer vision tasks to predict human ratings of arousal, valence, and beauty for images from multiple categories (objects, faces, landscapes, art) across two datasets.
View Article and Find Full Text PDFIET Syst Biol
January 2025
Center for Computational Biology, Department of Computational Biology, IIIT-Delhi, New Delhi, India.
One of the challenges that beset modelling complex biological networks is to relate networks to function to dynamics. A further challenge is deciphering the cellular function and dynamics that can change drastically when the network edge is tinkered with by adding or removing it. To illustrate this, the authors took a well-studied three-variable Goodwin oscillatory motif with only a negative feedback loop.
View Article and Find Full Text PDFFront Robot AI
January 2025
Neuro-robotics Laboratory, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
Reliable proprioception and feedback from soft sensors are crucial for enabling soft robots to function intelligently in real-world environments. Nevertheless, soft sensors are fragile and are susceptible to various damage sources in such environments. Some researchers have utilized redundant configuration, where healthy sensors compensate instantaneously for lost ones to maintain proprioception accuracy.
View Article and Find Full Text PDFTrends Neurosci
January 2025
Neural Computation Group, Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-Universität Gießen, Gießen 35392, Germany; Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus-Liebig-Universität Gießen & Technische Universität Darmstadt, Marburg 35032, Germany. Electronic address:
Rhythmic neural activity is considered essential for adaptively modulating responses in the visual system. In this opinion article we posit that visual brain rhythms also serve a key function in the representation and communication of visual contents. Collating a set of recent studies that used multivariate decoding methods on rhythmic brain signals, we highlight such rhythmic content representations in visual perception, imagery, and prediction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!