Peat bogs are unique wetland ecosystems of high conservation value all over the world, yet data on the macroinvertebrates (including mayfly assemblages) in these habitats are still scarce. Over the course of one growing season, mayfly assemblages were sampled each month, along with other macroinvertebrates, in the largest and oldest Croatian peat bog and an adjacent stream. In total, ten mayfly species were recorded: two species in low abundance in the peat bog, and nine species in significantly higher abundance in the stream. Low species richness and abundance in the peat bog were most likely related to the harsh environmental conditions and mayfly habitat preferences. In comparison, due to the more favourable habitat conditions, higher species richness and abundance were observed in the nearby stream. Three of the recorded species, from the peat bog, and and from the stream are new records for the Croatian mayfly fauna. Typical Central European life cycle patterns were confirmed for several species (e.g. , , ), while for several others (e.g. , ) some discrepancies were observed. Therefore, these results provide new and valuable information on the ecology of mayflies in peat bog habitats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240127 | PMC |
http://dx.doi.org/10.3897/zookeys.637.10359 | DOI Listing |
Rapid Commun Mass Spectrom
April 2025
Biological Sciences Division, University of Chicago, Illinois, Chicago, USA.
Rationale: The high-resolution measurement capability of Fourier-transform mass spectrometry (FT-MS) has made it a necessity for exploring the molecular composition of complex organic mixtures, like soil, plant, aquatic, and petroleum samples. This demand has driven a need for informatics tools to explore and analyze FT-MS data in a robust and reproducible manner.
Methods: FREDA is an interactive web application developed to enable spectrometrists to format, process, and explore their FT-MS data without the need for statistical programming expertise.
Rewetted bogs with high water levels (WL) and mire-specific vegetation are crucial carbon (C) sinks, but their function might be threatened by tree encroachment, a phenomenon widespread in the northern hemisphere that often coincides with low WL. This might impact C cycling both at the ecosystem and microform scale in multiple ways, but so far, data are lacking. We established two sites in the same former peat extraction area, one showing permanently high WL and mire-specific vegetation (open site, OS), while the other one has more fluctuating WL and a dense birch ( Ehrh.
View Article and Find Full Text PDFMolecules
November 2024
College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait.
This study examines a boreal peatland (the Sagnes peatland, Fanay, Limousin, France) with a depth of 1 m. This peatland is currently in the late stages of organic deposition, as evidenced by the growth of species, along with mosses, in the uppermost level. To gain molecular insights, we conducted an analysis of the lignin and polyphenolic counterparts using HMDS (hexamethyldisilazane) thermochemolysis, enabling the identification of lignin degradation proxies.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark; CBIO, Centre for Circular Bioeconomy, Aarhus University, Denmark.
Peatlands cover 3 % of the Danish land area, but drainage of these areas contributes to approximately 25 % of the total agricultural greenhouse gas (GHG) emissions. Paludiculture, defined as agriculture on wet or rewetted peatlands, has been proposed as a strategy to mitigate GHG emissions while keeping up production. However, little is known about the net GHG effects during establishment and how it is influenced by soil biogeochemical conditions.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, 60-649 Poznan, Poland.
The rising global temperature makes understanding the impact of warming on plant physiology in critical ecosystems essential, as changes in plant physiology can either help mitigate or intensify climate change. The northern peatlands belong to the most important parts of the global carbon cycle. Therefore, knowledge of the ongoing and future climate change impacts on peatland vegetation photosynthesis is crucial for further refinement of peatland or global carbon cycle and vegetation models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!