This study attempted to investigate and validate whether epididymis cold storage could be a suitable alternative for short-term preservation of spermatozoa. Mouse cauda epididymides and spermatozoa were preserved at 4-8°C from 1 day to 6 weeks. From days 1 to 10, motility and fertility were daily examined when motility loss occurred. From week 1, spermatozoa were used for intracytoplasmic sperm injection (ICSI) at weekly intervals to test their fertility, and spermatozoa DNA integrity was determined by comet assay. We found that motility and progressive motility scores gradually decreased with storage time. In nearly all spermatozoa, DNA integrity was maintained from days 1 to 10, but the percentage of spermatozoa with damaged DNA significantly increased from week 2 to week 6. Spermatozoa retained fertility until day 6, although fertility gradually decreased after day 3. From week 1 to week 5, fertilization rates by ICSI were more than 82.69% but decreased gradually after week 3. We found that spermatozoa preserved in the epididymis at 4-8°C had progressively lower motility, fertility and proportion of undamaged DNA, but could still fertilize oocytes. However, all the parameters of cold-preserved spermatozoa were completely inferior to that from cold-preserved cauda epididymides. The results imply that cold storage of cauda epididymides could be conducive to short-term preservation of spermatozoa, and the cold-stored spermatozoa can resist DNA denaturation, which is necessary for maintaining reproductive ability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0967199416000435 | DOI Listing |
Nature
January 2025
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The abundance and sequence of satellite DNA at and around centromeres is evolving rapidly despite the highly conserved and essential process through which the centromere directs chromosome inheritance. The impact of such rapid evolution is unclear. Here we find that sequence-dependent DNA shape dictates packaging of pericentromeric satellites in female meiosis through a conserved DNA-shape-recognizing chromatin architectural protein, high mobility group AT-hook 1 (HMGA1).
View Article and Find Full Text PDFNat Commun
January 2025
Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.
The replication of the two chromosomes in the pathogenic bacterium Vibrio cholerae is coordinated by the binding of initiator protein RctB to a checkpoint sequence, crtS. Replication of crtS on the primary chromosome (Chr1) triggers replication of the secondary chromosome (Chr2), but the details are poorly understood. Here, we analyze RctB binding patterns in the V.
View Article and Find Full Text PDFArch Microbiol
January 2025
School of Basic and Applied Sciences, Department of Biological Sciences, Dayananda Sagar University, Innovation Campus, Kudlu Gate, Hosur Rd, Bengaluru, 560 068, India.
To explore the mechanistic underpinnings of caffeine as a potent antibacterial against Staphylococcus aureus ATCC 25923 via in vitro functional assays, whole-genome sequencing, and in silico docking studies. In vitro studies established that caffeine's minimum inhibitory concentration (MIC) against S. aureus ATCC 25923 is 0.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, PR China. Electronic address:
Photodynamic inactivation (PDI) has emerged as a novel non-thermal process technology for inactivating microorganisms due to its low cost, safety, and efficiency. This study aimed to investigate the antimicrobial effect of VK-mediated PDI against Pseudomonas fluorescens (P. fluorescens) and to assess its impact on the quality of the blunt bream contaminated with P.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX 77030, USA.
Cell cycle checkpoints are the regulatory mechanisms that secure the strict order of cellular events for cell division that ensure genome integrity. It has been proposed that mitosis initiation depends on the completion of DNA replication, which must be tightly controlled to guarantee genome duplication. Contrary to these conventional hypotheses, we showed here that cells were able to enter mitosis without completion of DNA replication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!