Land degradation results in declining biodiversity and the disruption of ecosystem functioning worldwide, particularly in the tropics. Vegetation restoration is a common tool used to mitigate these impacts and increasingly aims to restore ecosystem functions rather than species diversity. However, evidence from community experiments on the effect of restoration practices on ecosystem functions is scarce. Pollination is an important ecosystem function and the global decline in pollinators attenuates the resistance of natural areas and agro-environments to disturbances. Thus, the ability of pollination functions to resist or recover from disturbance (that is, the functional resilience) may be critical for ensuring a successful restoration process. Here we report the use of a community field experiment to investigate the effects of vegetation restoration, specifically the removal of exotic shrubs, on pollination. We analyse 64 plant-pollinator networks and the reproductive performance of the ten most abundant plant species across four restored and four unrestored, disturbed mountaintop communities. Ecosystem restoration resulted in a marked increase in pollinator species, visits to flowers and interaction diversity. Interactions in restored networks were more generalized than in unrestored networks, indicating a higher functional redundancy in restored communities. Shifts in interaction patterns had direct and positive effects on pollination, especially on the relative and total fruit production of native plants. Pollinator limitation was prevalent at unrestored sites only, where the proportion of flowers producing fruit increased with pollinator visitation, approaching the higher levels seen in restored plant communities. Our results show that vegetation restoration can improve pollination, suggesting that the degradation of ecosystem functions is at least partially reversible. The degree of recovery may depend on the state of degradation before restoration intervention and the proximity to pollinator source populations in the surrounding landscape. We demonstrate that network structure is a suitable indicator for pollination quality, highlighting the usefulness of interaction networks in environmental management.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature21071DOI Listing

Publication Analysis

Top Keywords

vegetation restoration
12
ecosystem functions
12
ecosystem restoration
8
ecosystem
7
pollination
7
restoration
7
restoration strengthens
4
strengthens pollination
4
pollination network
4
network resilience
4

Similar Publications

Most Mediterranean ecosystems have been profoundly shaped by wildfires, driving the evolution of plant species. Through photo interpretation and field inventories, this research assessed vegetation dynamics from 1984 to 2021, examining how fire severity and recurrence, key fire regime variables, influenced changes in structure and woody species diversity. Using two burn scars (1988 and 2006), we identified four scenarios dominated by Pinus pinea tree species: control (unburned), areas burned once (either in 1988 or 2006), and twice (in both 1988 and 2006).

View Article and Find Full Text PDF

Human-driven habitat loss is recognized as the greatest cause of the biodiversity crisis, yet to date we lack robust, spatially explicit metrics quantifying the impacts of anthropogenic changes in habitat extent on species' extinctions. Existing metrics either fail to consider species identity or focus solely on recent habitat losses. The persistence score approach developed by Durán .

View Article and Find Full Text PDF

Water scarcity is a foremost environmental concern and is expected to hasten in the forthcoming years due to severe fluctuations in weather patterns worldwide. The present work was designed to explore the potential role of alpha-tocopherol (α-Toc), a form of vitamin E, on the morphological, physio-biochemical, and cellular antioxidant responses of two radish genotypes grown under drought conditions (38 ± 3% of field capacity). The individual and combined applications of α-Toc (100 ppm) were used as T0- Control, T1- Control + TF (TF-alpha-tocopherol), T2- Drought (D), and T3- D + TF with three replications.

View Article and Find Full Text PDF

Meta-analysis reveals global variations in plant diversity effects on productivity.

Nature

January 2025

Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada.

Positive effects of plant diversity on productivity have been globally demonstrated and explained by two main effects: complementarity effects and selection effects. However, plant diversity experiments have shown substantial variation in these effects, with driving factors poorly understood. On the basis of a meta-analysis of 452 experiments across the globe, we show that productivity increases on average by 15.

View Article and Find Full Text PDF

The Trx-Prx redox pathway and PGR5/PGRL1-dependent cyclic electron transfer play key regulatory roles in poplar drought stress.

Tree Physiol

January 2025

Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.

Understanding drought resistance mechanisms is crucial for breeding poplar species suited to arid and semi-arid regions. This study explored the drought responses of three newly developed 'Zhongxiong' series poplars using integrated transcriptomic and physiological analyses. Under drought stress, poplar leaves showed significant changes in differentially expressed genes (DEGs) linked to photosynthesis-related pathways, including photosynthesis-antenna proteins and carbon fixation, indicating impaired photosynthetic function and carbon assimilation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!