Biofunctional polyethylene glycol coatings on titanium: An in vitro-based comparison of functionalization methods.

Colloids Surf B Biointerfaces

Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Escola d'Enginyeria Barcelona Est, Technical University of Catalonia (UPC), C/Eduard Maristany 10-14, 08019 Barcelona, Spain; Centre for Research in NanoEngineering (CRNE) - UPC, C/Pascual i Vila 15, 08028 Barcelona, Spain. Electronic address:

Published: April 2017

Three methods for the production of Polyethylene glycol (PEG) coatings on titanium are compared, i.e. plasma polymerization, electrodeposition and silanization. The compared deposition methods presented similar wettability (hydrophilic coatings), chemical composition assessed by XPS and thickness around 1nm. The coatings lowered albumin adsorption and presented a decreased fibroblast, Streptococcus sanguinis and Lactobacillus salivarius adhesion. Immobilization of a cell adhesion peptide (RGD) presented a higher fibroblast adhesion and no alteration of the bacterial adhesion, giving three methods for the biofunctionalization of titanium for dental implants. The feasibility of each methodology is compared in terms of the process parameters in order to provide a guide for the election of the methodology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2017.01.042DOI Listing

Publication Analysis

Top Keywords

polyethylene glycol
8
coatings titanium
8
three methods
8
biofunctional polyethylene
4
coatings
4
glycol coatings
4
titanium vitro-based
4
vitro-based comparison
4
comparison functionalization
4
methods
4

Similar Publications

Rationale: Current research on antiviral treatment in children is relatively limited, especially in children under 1 year old.

Patient Concerns: Liu XX, an 8-month-old infant (case number: 3001120473), presented to the hospital in August 2016 with a chief complaint of being "hepatitis B surface antigen positive for 8 months and experiencing abnormal liver function for 5 months."

Diagnoses: The patient was diagnosed as chronic hepatitis B cirrhosis (G3S3-4) with active compensatory phase.

View Article and Find Full Text PDF

Aptamers bind to their targets with exceptional affinity and specificity. However, their intracellular application is hampered by the lack of knowledge about the effect of the cellular milieu on the RNA structure/stability. In this study, cellular crowding was mimicked using polyethylene glycol (PEG), and the crucial role of Mg ions in stabilizing the structure of an RNA aptamer was investigated.

View Article and Find Full Text PDF

Most synthetic hydrogels are formed through radical polymerization to yield a homogenous covalent meshwork. In contrast, natural hydrogels form through mechanisms involving both covalent assembly and supramolecular interactions. In this communication, we expand the capabilities of covalent poly(ethylene glycol) (PEG) networks through co-assembly of supramolecular peptide nanofibers.

View Article and Find Full Text PDF

The morphology of nanodrugs is of utmost importance in photothermal therapy because it directly influences their physicochemical behavior and biological responses. However, clarifying the inherent relationship between morphology and the resultant properties remains challenging, mainly due to the limitations in the flexible morphological regulation of nanodrugs. Herein, we created a range of morphologically controlled nanoassemblies based on poly(ethylene glycol)--poly(d,l-lactide) (PEG-PLA) block copolymer building blocks, in which the model photosensitizer phthalocyanine was incorporated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!