In this work the effects of the pressure between 1-150 Bar on pulsed laser ablation in liquids (PLAL) during the production of silver nanoparticles (AgNPs) in water was investigated. The produced NPs are the results of two different well-known stages which are the plasma and the bubble evolution occurring until the generated material is released into the solution. The main aim of this work is to show which roles is played by the variation of water pressure on the laser induced plasma and the cavitation bubble dynamics during the NPs formation. Their implication on the comprehension of the as-produced NPs formation mechanisms is treated. The typical timescales of the different stages occurring in water at different pressures have been studied by optical emission spectroscopy (OES), imaging and shadowgraph experiments. Finally surface plasmon resonance (SPR) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS) and scanning electron microscopy (SEM) for characterization of the material released in solution, have been used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201601231 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!