Alteration of miRNAs and dietary polyunsaturated fatty acids (PUFAs) underlies vascular inflammation. PUFAs are known to be incorporated into the cell membrane of monocytes/macrophages or endothelial cells, the major cellular players of vascular diseases, thereby affecting cellular signal transduction. Nevertheless, there are no investigations concerning the PUFA impact on miRNA expression by these cells. With regard to the key role miRNAs play for overall cellular functionality, this study aims to elucidate whether PUFAs affect miRNA expression profiles. To this end, the monocyte/macrophage cell line RAW264.7 and the endothelial cell line TIME were enriched with either docosahexaenoic acid (DHA; n3-PUFA) or arachidonic acid (AA; n6-PUFA) until reaching a stable incorporation into the plasma membrane and, at least in part, exposed to an inflammatory milieu. Expressed miRNAs were determined by deep sequencing, and compared to unsupplemented/unstimulated controls. Data gained clearly show that PUFAs in fact modulate miRNA expression of both cell types analyzed regardless the presence/absence of an inflammatory stimulator. Moreover, certain miRNAs already linked to vascular inflammation were found to be affected by cellular PUFA enrichment. Hence, vascular inflammation appears to be influenced by dietary fatty acids, inter alia, via PUFA-mediated modulation of the type and amount of miRNAs synthesized by cells involved in the inflammatory process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343820 | PMC |
http://dx.doi.org/10.3390/ijms18020284 | DOI Listing |
Zool Res
January 2025
Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.
Increasing evidence implicates disruptions in testicular fatty acid metabolism as a contributing factor in non-obstructive azoospermia (NOA), a severe form of male infertility. However, the precise mechanisms linking fatty acid metabolism to NOA pathogenesis have not yet been fully elucidated. Multi-omics analyses, including microarray analysis, single-cell RNA sequencing (scRNA-seq), and metabolomics, were utilized to investigate disruptions in fatty acid metabolism associated with NOA using data from public databases.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
Introduction: Mycophenolate mofetil (MMF) is an immunosuppressive drug administered in the management of both autoimmune diseases and organ transplantation. The main aims of the study were: (a) to obtain information regarding the safety of using MMF in respect of its effect on normal T and B cells in lymphoid tissues; (b) to investigate whether the generation of inducible Foxp3-expressing regulatory T cells (Treg) might constitute additional mechanisms underlying the immunosuppressive properties of MMF.
Methods: The effect of MMF ( studies) and its active metabolite, mycophenolic acid, ( studies) on murine CD4 and CD8 T cells as well as B cells was determined, regarding: (a) absolute count, proliferation and apoptosis of these cells ( studies); (b) absolute count of these cells in the head and neck lymph nodes, mesenteric lymph nodes and the spleen ( studies).
Background: Short-chain fatty acids (SCFAs), derived from the fermentation of dietary fiber by intestinal commensal bacteria, have demonstrated protective effects against acute lung injury (ALI) in animal models. However, the findings have shown variability across different studies. It is necessary to conduct a comprehensive evaluation of the efficacy of these treatments and their consistency.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.
This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Bariatric surgery is an effective treatment for type 2 Diabetes Mellitus (T2DM), yet the precise mechanisms underlying its effectiveness remain incompletely understood. While previous research has emphasized the role of rearrangement of the gastrointestinal anatomy, gaps persist regarding the specific impact on the gut microbiota and barriers within the biliopancreatic, alimentary, and common limbs. This study aimed to investigate the effects of duodenal-jejunal bypass (DJB) surgery on obese T2DM mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!