POTENTIAL OF DISCARIA AMERICANA FOR METAL STABILIZATION ON SOILS AMENDED WITH BIOSOLIDS AND ASH-SPIKED BIOSOLIDS.

Int J Phytoremediation

b Cátedra de Microbiología , Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires , Argentina.

Published: February 2009

Biosolids (B) may contain various types of environmental pollutants, which can exert phytotoxic effects in plants. The effect of aqueous extracts on seed germination and the primary root growth of discaria (Discaria americana) obtained from different soil-application rates of B and a mixture of B and incinerated B were investigated. The objective was to evaluate the potential use of discaria for the stabilization of B-amended soils. Ryegrass (Lolium perenne L.) was used for comparison. Compared to ryegrass, relative seed germination (RSG) was significantly lower for discaria. RSG of discaria and rye grass was inversely correlated to the electrical conductivity of extracts, although a significant adverse effect was only observed for ryegrass with the highest dose of the mixture of B and incinerated B. This dose also produced a reduction in the germination index of discaria, which could not be correlated with the parameters studied. The B extracts did not exert any significant adverse effect on the relative root growth of both species. An increase in relative root growth and germination index was observed for discaria with a field application rate equivalent of 156 t DW ha of B, suggesting a stimulating effect of the amendment. The results obtained in this study suggest that germinated seedlings of discaria might be used for the stabilization of B-amended soils. However, further greenhouse and field experiments should be performed to confirm these findings.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226510802378475DOI Listing

Publication Analysis

Top Keywords

root growth
12
potential discaria
8
discaria americana
8
seed germination
8
discaria
8
mixture incinerated
8
discaria stabilization
8
stabilization b-amended
8
b-amended soils
8
relative root
8

Similar Publications

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.

View Article and Find Full Text PDF

Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops.

View Article and Find Full Text PDF

Thriving in adversity: Understanding how maize seeds respond to the challenge of combined cold and high humidity stress.

Plant Physiol Biochem

December 2024

College of Agronomy, Jilin Agricultural University, 2888 Xincheng St, Changchun, 130118, Jilin, PR China; Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China. Electronic address:

Extreme conditions, such as cold and high humidity in northeast China's high-latitude maize region, can hinder crop yield and stability during the vegetative stage. However, there is a paucity of research examining the effects of simultaneous cold and high humidity stress on plant responses. In this study, we characterized the acclimation of JD558 (cold- and high humidity-sensitive hybrid) and JD441 (cold- and high humidity-tolerant hybrid) to stress at sowing caused by cold (4 °C), high humidity (25%), and their combined stress for five days, using physiological measurements and metabolomics during the stress treatments and recovery stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!