The cleavage of a Csp -H bond by an N/B frustrated Lewis pair (FLP) is reported. Upon mild heating, the ambiphilic molecule (2-NMe -C H ) BH activates the C-H bond of a methyl group in α position of a nitrogen atom to generate an unprecedented N-B heterocycle. Upon further heating, the novel species rearranges through a hydride abstraction/1,2-aryl shift sequence. The mechanistic details of these transformations are investigated by quantum mechanical calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201700390 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China.
Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Applied Science and Humanities, Haldia Institute of Technology, ICARE Complex, Haldia 721657, India.
This study explores the reactivity of a new intermolecular P/B frustrated Lewis pair in the context of dinitrogen activation through a push-pull mechanism. The ab initio molecular dynamics model known as atom-centered density matrix propagation plays a pivotal role in elucidating the weakly associated encounter complex. In-depth analysis, mainly through intrinsic reaction coordinate calculations, supports a single-step mechanism.
View Article and Find Full Text PDFChemistry
January 2025
University of Oxford, Inorganic Chemistry Laboratory, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Combining experiment and theory, the mechanisms of H2 activation by the potassium-bridged aluminyl dimer K2[Al(NON)]2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tertbutyl-9,9-dimethylxanthene) and its monomeric K+-sequestered counterpart have been investigated. These systems show diverging reactivity towards the activation of dihydrogen, with the dimeric species undergoing formal oxidative addition of H2 at each Al centre under ambient conditions, and the monomer proving to be inert to dihydrogen addition. Noting that this K+ dependence is inconsistent with classical models of single-centre reactivity for carbene-like Al(I) species, we rationalize these observations instead by a cooperative frustrated Lewis pair (FLP)-type mechanism (for the dimer) in which the aluminium centre acts as the Lewis base and the K+ centres as Lewis acids.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
The development of all-solid-state frustrated Lewis pairs (FLPs) metal-free hydrogenation catalysts with excellent activity and stability remains a significant challenge. In this work, B, N codoped FLPs catalysts (De-rGO-NB) were prepared by the strategy of fabricating carbon defects and heteroatom doping on the surface of reduced graphene oxide and applied in the selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. It was found that electron-rich pyridine-N (Lewis base) and adjacent electron-deficient B-N (Lewis acid) sites could be constructed on the surface of reduced graphene oxide using dicyandiamide and metaboric acid as N and B sources, thus forming FLPs sites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, University of North Texas CHEM 305D. 1508 W Mulberry St, Denton, Texas, 76201, United States.
Converting CO to high-value fine chemicals represents one of the most promising approaches to combat global warming and subsequently achieve a sustainable carbon cycle. Herein, we contribute an organoboron functionalized ultra-thin metal-organic nanosheet (MON), termed TCPB-Zr-NS, featuring an abundance of exposed Lewis acidic B and formate sites, which can effectively promote CO conversion upon the addition of Lewis basic o-phenylenediamines. Compared with the prototypical 3D analogue TCPB-Zr-3D, the resultant TCPB-Zr-NS showcases dramatically improved catalytic activity for the cyclization of o-phenylenediamine as a result of the highly exposed active sites and efficient substrates/products diffusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!