Moderate-intensity regular exercise improves proinflammatory responses of lipopolysaccharide- (LPS-) stimulated macrophages. However, intracellular events that mediate the beneficial effects of exercise were unclear. This study aimed to clarify the mechanism by which regular voluntary exercise (VE) improves proinflammatory cytokine production by macrophages challenged with LPS. Peritoneal macrophages from VE mice secreted considerably higher amounts of interleukin- (IL-) 1 and IL-18 than did cells from sedentary control (SC) mice in the presence and absence of LPS, although tumor necrosis factor- and IL-10 secretion were comparable between both groups. The mRNA levels of these cytokines increased significantly in response to LPS; similar levels were noted in macrophages from both SC and VE mice. Moreover, LPS evoked similar levels of degradation of inhibitor of B (IB) and phosphorylation of IB kinase , c-Jun N-terminal kinase, and p38 in macrophages from SC and VE mice. These results indicate that the increased IL-1 and IL-18 secretion in VE mice are regulated posttranscriptionally. On the other hand, macrophages from VE mice showed higher amounts of caspase-1 protein than did cells from SC mice. These results suggest that regular VE potentiates IL-1 and IL-18 secretion in LPS-challenged macrophages by increasing caspase-1 levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241476 | PMC |
http://dx.doi.org/10.1155/2017/9290416 | DOI Listing |
In Vivo
December 2024
Department of Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea;
Background/aim: Regulatory T cells (Tregs) play a crucial role in inflammatory responses by regulating the activity of various immune cells. M2 macrophages induced by IL-10 and TGF-β exhibit anti-inflammatory functions and induce Treg differentiation. Although the beneficial effects of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) on various diseases have been widely reported, the mechanisms, through which it alleviates allergic contact dermatitis (ACD) via Tregs and macrophages, are not well understood.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan;
Background/aim: Gangliosides regulate bone formation and resorption. Bone formation is reduced in mice lacking ganglioside GM2/GD2 synthase due to a decrease in osteoblasts. However, the effects of the loss of complex gangliosides by the deletion of both GM2/GD2 and GD3 synthases are unknown.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China.
Aim: Imbalanced M1/M2 macrophage phenotype activation is a key point in diabetic kidney disease (DKD). Macrophages mainly exhibit the M1 phenotype, which contributes to inflammation and fibrosis in DKD. Studies have indicated that autophagy plays an important role in M1/M2 activation.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Applied Mathematics, University of California, Santa Cruz, Santa Cruz, CA, United States of America.
The motility of macrophages in response to microenvironment stimuli is a hallmark of innate immunity, where macrophages play pro-inflammatory or pro-reparatory roles depending on their activation status during wound healing. Cell size and shape have been informative in defining macrophage subtypes. Studies show pro and anti-inflammatory macrophages exhibit distinct migratory behaviors, in vitro, in 3D and in vivo but this link has not been rigorously studied.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
GJB2 encodes connexin 26 (Cx26), the most commonly mutated gene causing hereditary non-syndromic hearing loss. Cx26 is mainly expressed in supporting cells (SCs) and fibrocytes in the mammalian cochlea. Gene therapy is currently considered the most promising strategy for eradicating genetic diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!