Since their introduction around a decade ago, embolic drug-eluting beads (DEBs) have become a well-established treatment option for the locoregional transarterial treatment of hepatic malignancies. Despite this success, the therapy is seen to be limited by the choice of drug and more effective options are therefore being sought. These include the small molecule multi-tyrosine kinase inhibitors (MTKi), which exert an anti-angiogenic and anti-proliferative effect that could be highly beneficial in combating some of the unwanted downstream consequences of embolization. Vandetanib is an MTKi which acts against such targets as vascular endothelial growth factor receptor (VEGFR) and epithelial growth factor receptor (EGFR) and has demonstrated modest activity against hepatocellular carcinoma (HCC), albeit with some dose-limiting cardiac toxicity. This makes this compound an interesting candidate for DEB-based locoregional delivery. In this study we describe the preparation and characterisation of vandetanib DEBs made from DC Bead™ and its radiopaque counterpart, DC Bead LUMI™. Drug loading was shown to be dependent upon the pH of the drug loading solution, as vandetanib has multiple sites for protonation, with the bead platform also having a fundamental influence due to differences in binding capacities and bead shrinkage effects. Fourier transform infrared (FTIR) spectroscopy and energy dispersive X-ray (EDX) Spectroscopy confirmed drug interaction is by ionic interaction, and in the case of the radiopaque DEB, the drug is distributed uniformly inside the bead and contributes slightly to the overall radiopacity by virtue of a bromine atom on the vandetanib structure. Drug release from both bead platforms is controlled and sustained, with a slightly slower rate of release from the radiopaque bead due to its more hydrophobic nature. Vandetanib DEBs therefore have suitable characteristics for intra-arterial delivery and site-specific sustained release of drug into liver tumours.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2017.01.033 | DOI Listing |
J Biol Eng
January 2025
Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA.
Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Laboratory of Coordination and Analytical Chemistry (LCCA), Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, Ben Maachou Road, B.P: 20, 24000, El Jadida, Morocco.
This work is focused on the synthesis and performance of Ni(PO)-based catalysts doped with Cu, Co, Mn, Ce, Zr, and Mg for the complete oxidation of ethanol, aiming at reducing emissions from ethanol-blended gasoline. Nickel phosphate was prepared via the co-precipitation method, followed by impregnation with the specified dopants. The catalysts were thoroughly characterized by XRD, N-physisorption, XRF, FTIR and Raman spectroscopy, FESEM, NH-TPD, CO-TPD, and H-TPR to explain their performance.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
This report investigates the preparation, characterization, and application of activated carbon derived from Spathodea campanulata flowers (SCAC) to remove Congo Red (CR) dye from aqueous streams. SCAC was synthesized using orthophosphoric acid activation which yielded a mesoporous material with a specific surface area of (986.41 m/g), significantly exceeding values reported for flower-derived activated carbons in the available literature.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
Boehmite nanoparticles and NaY nanozeolite were synthesized by co-precipitation and hydrothermal methods, respectively, and characterized by XRD, FT-IR, TG-DTA, BET, and SEM techniques. XRD and BET analyses demonstrated the formation of boehmite nanoparticles with a surface area of 350 m/g and high crystallinity NaY nanozeolite with a surface area of 957 m/g. In order to evaluate the effect of the content of the mesoporous boehmite nanoparticles on the catalytic performance of the Residue Fluid Catalytic Cracking (RFCC) catalyst, alumina active matrix-based and silica inactive matrix-based catalysts were prepared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!