Neuroprotective Mechanisms of Melatonin in Hemorrhagic Stroke.

Cell Mol Neurobiol

Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.

Published: October 2017

Hemorrhagic stroke which consists of subarachnoid hemorrhage and intracerebral hemorrhage is a dominant cause of death and disability worldwide. Although great efforts have been made, the physiological mechanisms of these diseases are not fully understood and effective pharmacological interventions are still lacking. Melatonin (N-acetyl-5-methoxytryptamine), a neurohormone produced by the pineal gland, is a broad-spectrum antioxidant and potent free radical scavenger. More importantly, there is extensive evidence demonstrating that melatonin confers neuroprotective effects in experimental models of hemorrhagic stroke. Multiple molecular mechanisms such as antioxidant, anti-apoptosis, and anti-inflammation, contribute to melatonin-mediated neuroprotection against brain injury after hemorrhagic stroke. This review article aims to summarize current knowledge regarding the beneficial effects of melatonin in experimental models of hemorrhagic stroke and explores the underlying mechanisms. We propose that melatonin is a promising neuroprotective candidate that is worthy of further evaluation for its potential therapeutic applications in hemorrhagic stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-017-0461-9DOI Listing

Publication Analysis

Top Keywords

hemorrhagic stroke
24
experimental models
8
models hemorrhagic
8
hemorrhagic
6
stroke
6
melatonin
5
neuroprotective mechanisms
4
mechanisms melatonin
4
melatonin hemorrhagic
4
stroke hemorrhagic
4

Similar Publications

Objective: To establish and validate a model based on hyperdense middle cerebral artery sign (HMCAS) radiomics features for predicting hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) after endovascular treatment (EVT).

Methods: Patients with AIS who presented with HMCAS on non-contrast computed tomography (NCCT) at admission and underwent EVT at three comprehensive hospitals between June 2020 and January 2024 were recruited for this retrospective study. A radiomics model was constructed using the HMCAS radiomics features most strongly associated with HT.

View Article and Find Full Text PDF

Bioactive Materials Facilitate the Restoration of Neurological Function Post Cerebral Ischemic Stroke.

Int J Nanomedicine

December 2024

Department of Neurology, Neurology Specialist Hospital, The First Hospital of Jilin University, Jilin University, Changchun, People's Republic of China.

The recovery process following ischemic stroke is a complex undertaking involving intricate cellular and molecular interactions. Cellular dysfunction or aberrant pathways can lead to complications such as brain edema, hemorrhagic transformation, and glial scar hyperplasia, hindering angiogenesis and nerve regeneration. These abnormalities may contribute to long-term disability post-stroke, imposing significant burdens on both families and society.

View Article and Find Full Text PDF

Background: The association of genetic single-nucleotide polymorphisms (SNPs) related to endothelial function, inflammation, and their outcomes remains poorly studied.

Objectives: To evaluate the occurrence of ischemic stroke (IS) and other vascular events, and relationships between 19 SNPs in genes associated with endothelial function and inflammation with outcomes in a population at high risk of stroke.

Design: A prospective cohort study and multi-center community-based sectional survey.

View Article and Find Full Text PDF

Background: Pretreatment CT perfusion (CTP) marker relative cerebral blood volume (rCBV) < 42% lesion volume has recently shown to predict poor collateral status and poor 90-day functional outcome. However, there is a paucity of studies assessing its association with hemorrhagic transformation (HT). Here, we aim to assess the relationship between rCBV < 42% lesion volume with HT.

View Article and Find Full Text PDF

Background: Despite the reported efficacy of overground robotic exoskeleton (ORE) for rehabilitation of mobility post-stroke, its effectiveness in real-world practice is still debated. We analysed prospectively collected data from Improving Mobility Via Exoskeleton (IMOVE), a multicentre clinical implementation programme of ORE enrolling participants with various neurological conditions and were given options to choose between 12 sessions of ORE or conventional therapy (control).

Methods: This is analysis of participants under IMOVE who fulfilled the following criteria (i) primary diagnosis was stroke (ischemic, hemorrhagic; first or recurrent), (ii) onset of stroke was within 9 months and (iii) the intervention was during inpatient stay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!