Background: Nod-like receptor family, pyrin domain containing 3 (NLRP3) is an important cytosolic sensor of cellular stress and infection. Once activated, NLRP3 forms a multiprotein complex (inflammasome) that triggers the maturation and secretion of interleukin (IL)-1β and IL-18. We aimed to define the consequences of NLRP3 induction, utilizing exogenous adenosine triphosphate (ATP) as an inflammasome activator, to determine if inflammasome activation increases macrophage killing of Citrobacter rodentium and define mechanisms.

Methods: Bacterial survival was measured using a gentamicin protection assay. Inflammasome activation or inhibition in mouse J774A.1 macrophages were assessed by measuring IL-1β; cytokines and reactive oxygen species (ROS) were measured by ELISA and DCFDA, respectively.

Results: Activation of the inflammasome increased bacterial killing by macrophages and its inhibition attenuated this effect with no impact on phagocytosis or cell death. Furthermore, inflammasome activation suppressed pro-inflammatory cytokines during infection, possibly due to more effective bacterial killing. While the infection increased ROS production, this effect was reduced by inflammasome inhibitors, indicating that ROS is inflammasome-dependent. ROS inhibitors increased bacterial survival in the presence of ATP, suggesting that inflammasome-induced bacterial killing is mediated, at least in part, by ROS activity.

Conclusion: Improving inflammasome activity during infection may increase bacterial clearance by macrophages and reduce subsequent microbe-induced inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000455988DOI Listing

Publication Analysis

Top Keywords

inflammasome activation
16
bacterial killing
12
inflammasome
9
citrobacter rodentium
8
bacterial survival
8
increased bacterial
8
ros
6
bacterial
6
activation atp
4
atp enhances
4

Similar Publications

Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers.

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

Long-term use of naproxen can lead to serious side effects. Inspired by the biological activity of cinnamic acid, a series of cinnamic acid derivatives containing naproxen were designed, synthesized and explored their anti-inflammatory activities and mechanism in vitro. Our results indicated that all of naproxen derivatives showed more significant inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) production and had lower degree of cytotoxicity than that of naproxen.

View Article and Find Full Text PDF

Carbonaceous cores serve as surrogates for environmental particulate matter inducing vascular endothelial inflammation via inflammasome activation.

J Hazard Mater

December 2024

Key laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China. Electronic address:

Ambient particulate matter (PM) exposure is a known risk factor for cardiovascular diseases. Epidemiological studies have shown the association between PM exposure and vascular complications, including vasculitis, embolism, hypertension, stroke, and atherosclerosis. However, the exact mechanisms underlying its vascular toxicity, especially in relation to short-term exposures, remain incompletely understood.

View Article and Find Full Text PDF

Advances in research on the impact and mechanisms of pathogenic microorganism infections on pyroptosis.

Front Microbiol

December 2024

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.

Pyroptosis, also known as inflammatory necrosis, is a form of programmed cell death characterized by the activation of gasdermin proteins, leading to the formation of pores in the cell membrane, continuous cell swelling, and eventual membrane rupture. This process results in the release of intracellular contents, including pro-inflammatory cytokines like IL-1β and IL-18, which subsequently trigger a robust inflammatory response. This process is a crucial component of the body's innate immune response and plays a significant role in combating infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!