Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To see improvements in the imaging performance near biomaterial implants we assessed a multispectral fully phase-encoded turbo spin-echo (ms3D-PE-TSE) sequence for artifact reduction capabilities and scan time efficiency in simulation and phantom experiments. For this purpose, ms3D-PE-TSE and ms3D-TSE sequences were implemented to obtain multispectral images (±20kHz) of a cobalt-chromium (CoCr) knee implant embedded in agarose. In addition, a knee implant computer model and the acquired ms3D-PE-TSE images were used to investigate the possibilities for scan time acceleration using field-of-view (FOV) reduction for off-resonance frequency bins and compressed sensing reconstructions of undersampled data. Both acceleration methods were combined to acquire a +10kHz frequency bin in a second experiment. The obtained ms3D-PE-TSE images showed no susceptibility related artifacts, while ms3D-TSE images suffered from hyper-intensity artifacts. The limitations of ms3D-TSE were apparent in the far off-resonance regions (±[10-20]kHz) located close to the implant. The scan time calculations showed that ms3D-PE-TSE can be applied in a clinically relevant timeframe (~12min), when omitting the three central frequency bins. The feasibility of CS acceleration for ms3D-PE-TSE was demonstrated using retrospective reconstructions before combining CS and rFOV imaging to decrease the scan time for the +10kHz frequency bin from ~10.9min to ~3.5min, while also increasing the spatial resolution fourfold. The temporally resolved signal of ms3D-PE-TSE proved to be useful to decrease the intensity ripples after sum-of-squares reconstructions and increase the signal-to-noise ratio. The presented results suggest that the scan time limitations of ms3D-PE-TSE can be sufficiently addressed when focusing on signal acquisitions in the direct vicinity of metal implants. Because these regions cannot be measured with existing multispectral methods, the presented ms3D-PE-TSE method may enable the detection of inflammation or (pseudo-)tumors in locations close to the implant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mri.2017.01.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!