Based on our previous data on the presence of very small superparamagnetic iron oxide nanoparticles (VSOP) on brain endothelial structures during experimental autoimmune encephalomyelitis (EAE), we investigated the mechanisms of VSOP binding on inflamed brain endothelial cells in vivo and in vitro. After intravenous application, VSOP were detected in brain endothelial cells of EAE animals at peak disease and prior to clinical onset. In vitro, inflammatory stimuli increased VSOP uptake by brain endothelial bEnd.3 cells, which we confirmed in primary endothelial cells and in bEnd.3 cells cultured under shear stress. Transmission electron microscopy and blocking experiments revealed that during inflammation VSOP were endocytosed by bEnd.3. Modified sulfated glycosaminoglycans (GAG) on inflamed brain endothelial cells were the primary binding site for VSOP, as GAG degradation and inhibition of GAG sulfation reduced VSOP uptake. Thus, VSOP-based MRI is sensitive to visualize early neuroinflammatory processes such as GAG modifications on brain endothelial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2017.01.010 | DOI Listing |
J Integr Neurosci
December 2024
First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China.
The coexistence of anxiety or depression with coronary heart disease (CHD) is a significant clinical challenge in cardiovascular medicine. Recent studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activity could be a promising focus in understanding and addressing the development of treatments for comorbid CHD and anxiety or depression. The HPA axis helps to regulate the levels of inflammatory factors, thereby reducing oxidative stress damage, promoting platelet activation, and stabilizing gut microbiota, which enhance the survival and regeneration of neurons, endothelial cells, and other cell types, leading to neuroprotective and cardioprotective benefits.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.
Neuroscience
December 2024
Departamento de Neurobiología y Neuropatología, IIBCE, MEC, Montevideo, Uruguay. Electronic address:
Iron is one of the crucial elements for CNS development and function and its deficiency (ID) is the most common worldwide nutrient deficit in the world. Iron deficiency anemia (IDA) in pregnant women and infants is a worldwide health problem due to its high prevalence and its irreversible long-lasting effects on brain development. Even with iron supplementation, IDA during pregnancy and/or breastfeeding can result in irreversible cognitive, motor, and behavioral impairments.
View Article and Find Full Text PDFPediatr Rheumatol Online J
December 2024
Section of Rheumatology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Canada.
Background: Primary small vessel CNS vasculitis (sv-cPACNS) is a challenging inflammatory brain disease in children. Brain biopsy is mandatory to confirm the diagnosis. This study aims to develop and validate a histological scoring tool for diagnosing small vessel CNS vasculitis.
View Article and Find Full Text PDFBrain Pathol
December 2024
Laboratory of Neurobiology and Molecular Therapeutics, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease with no effective treatments, in part caused by variations in progression and the absence of biomarkers. Mice carrying the SOD1G93A transgene with different genetic backgrounds show variable disease rates, reflecting the diversity of patients. While extensive research has been done on the involvement of the central nervous system, the role of skeletal muscle remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!