Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants' response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2016.11.002 | DOI Listing |
Int J Mol Sci
January 2025
College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
s.s. belongs to the Cercidoideae subfamily, located at the base of the Leguminosae family.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea.
Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa ( L.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
Soybean () is a vital crop that is rich in high-quality protein and edible oil for human nutrition and agriculture. Saline-alkali stress, a severe environmental challenge, significantly limits soybean productivity. In this study, we found that the nodule receptor kinase GmNARK enhances soybean tolerance to alkali stress besides nodulation.
View Article and Find Full Text PDFMolecules
January 2025
Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico.
Inflammation, oxidative stress, and metabolic diseases are intricately linked in a complex, self-reinforcing relationship. Inflammation can induce oxidative stress, while oxidative stress can trigger inflammatory responses, creating a cycle that contributes to the development and progression of metabolic disorders; in addition, these effects can be observed at systemic and local scales. Both processes lead to cellular damage, mitochondrial dysfunction, and insulin resistance, particularly affecting adipose tissue, the liver, muscles, and the gastrointestinal tract.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
Unlabelled: Rhizobia are soil bacteria capable of establishing symbiosis within legume root nodules, where they reduce atmospheric N into ammonia and supply it to the plant for growth. Australian soils often lack rhizobia compatible with introduced agricultural legumes, so inoculation with exotic strains has become a common practice for over 50 years. While extensive research has assessed the N-fixing capabilities of these inoculants, their genomics, taxonomy, and core and accessory gene phylogeny are poorly characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!