Astrocytes play crucial roles in brain homeostasis and are emerging as regulatory elements of neuronal and synaptic physiology by responding to neurotransmitters with Ca elevations and releasing gliotransmitters that activate neuronal receptors. Aging involves neuronal and astrocytic alterations, being considered risk factor for neurodegenerative diseases. Most evidence of the astrocyte-neuron signaling is derived from studies with young animals; however, the features of astrocyte-neuron signaling in adult and aging brain remain largely unknown. We have investigated the existence and properties of astrocyte-neuron signaling in physiologically and pathologically aging mouse hippocampal and cortical slices at different lifetime points (0.5 to 20 month-old animals). We found that astrocytes preserved their ability to express spontaneous and neurotransmitter-dependent intracellular Ca signals from juvenile to aging brains. Likewise, resting levels of gliotransmission, assessed by neuronal NMDAR activation by glutamate released from astrocytes, were largely preserved with similar properties in all tested age groups, but DHPG-induced gliotransmission was reduced in aged mice. In contrast, gliotransmission was enhanced in the APP/PS1 mouse model of Alzheimer's disease, indicating a dysregulation of astrocyte-neuron signaling in pathological conditions. Disruption of the astrocytic IP R2 mediated-signaling, which is required for neurotransmitter-induced astrocyte Ca signals and gliotransmission, boosted the progression of amyloid plaque deposits and synaptic plasticity impairments in APP/PS1 mice at early stages of the disease. Therefore, astrocyte-neuron interaction is a fundamental signaling, largely conserved in the adult and aging brain of healthy animals, but it is altered in Alzheimer's disease, suggesting that dysfunctions of astrocyte Ca physiology may contribute to this neurodegenerative disease. GLIA 2017 GLIA 2017;65:569-580.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314210 | PMC |
http://dx.doi.org/10.1002/glia.23112 | DOI Listing |
Korean J Physiol Pharmacol
January 2025
Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea.
The brain's substantial metabolic requirements, consuming a substantial fraction of the body's total energy despite its relatively small mass, necessitate sophisticated metabolic mechanisms for efficient energy distribution and utilization. The astrocyte-neuron lactate shuttle (ANLS) hypothesis has emerged as a fundamental framework explaining the metabolic cooperation between astrocytes and neurons, whereby astrocyte-derived lactate serves as a crucial energy substrate for neurons. This review synthesizes current understanding of brain energy metabolism, focusing on the dual roles of lactate as both an energy substrate and a signaling molecule.
View Article and Find Full Text PDFExp Mol Med
December 2024
Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China.
Brain Behav Immun
November 2024
Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. Electronic address:
J Neurosci
October 2024
Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852.
Brain Behav Immun
January 2025
Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Neuroinflammation and autoimmunity are pivotal in the pathogenesis of neurodegenerative diseases. Complement activation and involvement of astrocyte-neuron C3/C3aR pathway have been observed, yet the mechanisms influencing α-synuclein (α-syn) pathology and neurodegeneration remain unclear. In this study, elevated levels of complement C3 were detected in the plasma of α-syn PFF-induced mice and the substantia nigra of A53T transgenic mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!