To investigate the association between store-operated Ca entry (SOCE) and reactive oxygen species (ROS) during hypoxia, this study determined the changes of transient receptor potential canonical 1 (TRPC1) and Orai1, two candidate proteins for store-operated Ca (SOC) channels and their gate regulator, stromal interaction molecule 1 (STIM1), in a hypoxic environment and their relationship with ROS in pulmonary arterial smooth muscle cells (PASMCs). Exposure to hypoxia caused a transient Ca spike and subsequent Ca plateau of SOCE to be intensified in PASMCs when TRPC1, STIM1, and Orai1 were upregulated. SOCE in cells transfected with specific short hairpin RNA (shRNA) constructs was almost completely eliminated by the knockdown of TRPC1, STIM1, or Orai1 alone and was no longer affected by hypoxia exposure. Hypoxia-induced SOCE enhancement was further strengthened by PEG-SOD but was attenuated by PEG-catalase, with correlated changes to intracellular hydrogen peroxide (HO) levels and protein levels of TRPC1, STIM1, and Orai1. Exogenous HO could mimic alterations of the interactions of STIM1 with TRPC1 and Orai1 in hypoxic cells. These findings suggest that TRPC1, STIM1, and Orai1 are essential for the initiation of SOCE in PASMCs. Hypoxia-induced ROS promoted the expression and interaction of the SOC channel molecules and their gate regulator via their converted product, HO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00138.2016 | DOI Listing |
Int J Mol Sci
June 2024
Department of Medical Science, Medical School of Albacete, Instituto de Biomedicina (IB-UCLM), University of Castilla-La Mancha, 02008 Albacete, Spain.
Transient receptor potential canonical (TRPC) channels are calcium channels with diverse expression profiles and physiological implications in the retina. Neurons and glial cells of rat retinas with photoreceptor degeneration caused by retinitis pigmentosa (RP) exhibit basal calcium levels that are above those detected in healthy retinas. Inner retinal cells are the last to degenerate and are responsible for maintaining the activity of the visual cortex, even after complete loss of photoreceptors.
View Article and Find Full Text PDFCell Calcium
May 2024
Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France. Electronic address:
The stromal interaction molecules (STIMs) are the sarcoplasmic reticulum (SR) Ca sensors that trigger store-operated Ca entry (SOCE) in a variety of cell types. While STIM1 isoform has been the focus of the research in cardiac pathophysiology, the function of the homolog STIM2 remains unknown. Using Ca imaging and patch-clamp techniques, we showed that knockdown (KD) of STIM2 by siRNAs increased SOCE and the I current in neonatal rat ventricular cardiomyocytes (NRVMs).
View Article and Find Full Text PDFJ Ginseng Res
November 2023
School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China.
Cells
November 2023
Institute for Pharmacology and Clinical Pharmacy, Biochemical and Pharmacological Centre (BPC) Marburg, University of Marburg, Karl-von-Frisch-Str. 2 K|03, 35043 Marburg, Germany.
Store-operated calcium entry (SOCE) in cardiomyocytes may be involved in cardiac remodeling, but the underlying mechanisms remain elusive. We hypothesized that SOCE may increase nuclear calcium, which alters gene expression via calcium/calmodulin-dependent enzyme signaling, and elucidated the underlying cellular mechanisms. An experimental protocol was established in isolated adult rat cardiomyocytes to elicit SOCE by re-addition of calcium following complete depletion of sarcoplasmic reticulum (SR) calcium and to quantify SOCE in relation to the electrically stimulated calcium transient (CaT) measured in the same cell before SR depletion.
View Article and Find Full Text PDFAuton Neurosci
September 2023
Department of Cell and Systems Physiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu 807-8555, Japan.
One of the mechanisms for hypertension is an increase in blood catecholamines due to increased secretion from sympathetic nerve terminals and adrenal medullary chromaffin (AMC) cells. Spontaneously hypertensive rats (SHRs) are used as an animal model of hypertension. Catecholamine secretion in AMC cells occurs in response to humoral factors and neuronal inputs from the sympathetic nerve fibres.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!