Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35%) bats from all eight species and was distributed in all four regions. The prevalence ranged 6-50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region). Leptospira DNA was detected in 25 (13%) bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity). No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5271587PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171175PLOS

Publication Analysis

Top Keywords

dna detected
16
bats
15
bartonella brucella
12
schreibersii bats
12
blythii bats
12
co-infected bartonella
12
agents bats
8
bacterial infections
8
collected regions
8
brucella leptospira
8

Similar Publications

Phylogeographic Characterization of Aedes albopictus (Skuse, 1894) in Algeria.

Acta Parasitol

January 2025

Laboratory of Parasitic Eco-Epidemiology and Population Genetics, Pasteur Institute of Algeria, Dely-Brahim, Algiers, Algeria.

Purpose: Aedes albopictus, known as the Asian tiger mosquito, is an extensively studied mosquito species recognized for its rapid global expansion and its capacity to transmit a range of viruses such as dengue, chikungunya, Zika, and yellow fever viruses. In 2010, Ae. albopictus was observed for the first time in Tizi-Ouzou, Algeria, and since then has colonized all the northern part of the country until the semi-arid areas.

View Article and Find Full Text PDF

Developing nanoscale platforms with high integration, assembly efficiency, and structural stability for performing complex computations in specific cells remains a significant challenge. To address this, the Three-dimensional Hierarchical Octahedral Robotic (THOR) DNA nanoplatform is introduced, which integrates targeting, logic computation, and sensing modules within a single framework. This nanoplatform specifically binds to cancer cell surface proteins, releasing aptamer-linked fuel chains to initiate subsequent computational processes.

View Article and Find Full Text PDF

Epigenetic Impacts of Non-Coding Mutations Deciphered Through Pre-Trained DNA Language Model at Single-Cell Resolution.

Adv Sci (Weinh)

January 2025

Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200230, China.

DNA methylation plays a critical role in gene regulation, affecting cellular differentiation and disease progression, particularly in non-coding regions. However, predicting the epigenetic consequences of non-coding mutations at single-cell resolution remains a challenge. Existing tools have limited prediction capacity and struggle to capture dynamic, cell-type-specific regulatory changes that are crucial for understanding disease mechanisms.

View Article and Find Full Text PDF

Carboxyl terminal modulator protein (CTMP) may be involved in various physiological and pathological processes, such as inflammation, tumor growth, and cardiac hypertrophy. Our recent study has shown that CTMP is increased with aging and plays a role in determining brain ischemic tolerance. However, it is not known how CTMP expression with aging is regulated and whether the changed CTMP expression has an effect on cell senescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!