Comparison of Efficacy of Preventive and Therapeutic Vaccines Targeting the N Terminus of β-Amyloid in an Animal Model of Alzheimer's Disease.

Mol Ther

Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA. Electronic address:

Published: January 2017

Previously, we reported that Alzheimer's disease (AD) epitope vaccines (EVs) composed of N-terminal β-amyloid (Aβ) B cell epitope fused with universal foreign T helper (Th) epitope(s) were immunogenic, potent, and safe in different amyloid precursor protein (APP) transgenic mice with early AD-like pathology. However, developing an effective therapeutic vaccine is much more challenging, especially when a self-antigen such as Aβ is a target. Here, we directly compare the efficacy of anti-Aβ antibodies in Tg2576 mice with low or high levels of AD-like pathology at the start of immunizations: 6-6.5 months for preventive vaccinations and 16-19 months for therapeutic vaccinations. EV in a preventive setting induced high levels of anti-Aβ antibodies, significantly reducing pathologic forms of Aβ in the brains of Tg2576 mice. When used therapeutically for immunesenescent Tg2576 mice, EV induced low levels of antibodies not sufficient for clearing of AD-like pathology. Separately, we demonstrated that EV was also not effective in 11-11.5-month-old Tg2576 mice with moderate AD-like pathology. However, we augmented the titers of anti-Aβ antibodies in transgenic (Tg) mice of the same age possessing the pre-existing memory Th cells and detected a significant decrease in diffuse and core plaques in cortical regions compared to control animals along with improved novel object recognition performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363310PMC
http://dx.doi.org/10.1016/j.ymthe.2016.10.002DOI Listing

Publication Analysis

Top Keywords

ad-like pathology
16
tg2576 mice
16
anti-aβ antibodies
12
alzheimer's disease
8
transgenic mice
8
high levels
8
mice
6
comparison efficacy
4
efficacy preventive
4
preventive therapeutic
4

Similar Publications

The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities.

View Article and Find Full Text PDF

Cannabinoid compounds have potential as treatments for a variety of conditions, with cannabigerol (CBG) being known for its anti-inflammatory properties. In this study, we investigated the effects of CBG in a cellular model of 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD). In the cellular model, we confirmed the cytotoxicity of CBG and downregulated the expression of inflammatory markers , , , and ( < 0.

View Article and Find Full Text PDF

Scope: Alzheimer's disease (AD) is the most prevalent form of dementia, lack of effective therapeutic interventions. In this study, we investigate the impact of intermittent fasting (IF), an alternative strategy of calorie restriction, on cognitive functions and AD-like pathology in a transgenic mouse model of AD.

Methods And Results: APP/PS1 mice at 6 months were randomly allocated to two dietary groups: one receiving ad libitum (AL) feeding and the other undergoing IF for 1 month.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex neurodegenerative disorder, with amyloid-beta (Aβ) aggregation playing a key role in its pathogenesis. Aβ-induced oxidative stress leads to neuronal damage, mitochondrial dysfunction, and apoptosis, making antioxidative strategies promising for AD treatment. This study investigates the effects of hydrogen-rich water (HRW) in a zebrafish AD model.

View Article and Find Full Text PDF

A new oleanane-type triterpenoid, 3β-acetyl-15α-hydroxy-oleanane-13β,28-olide (1), and a new clerodane furanoditerpenoid, cnidophyllin A (2), together with eleven known compounds (3-13) were isolated and identified from the 95% EtOH extract of the leaves and twigs of Croton cnidophyllus. Except for compounds 3 and 7, all other compounds were isolated for the first time from C. cnidophyllus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!